Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 15(3): 1261-6, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19532355

RESUMO

We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern definition on a sub 30-nm scale in combination with a deep vertical silicon etch of the order of ~300 nm. The nanoimprint method offers a cost-efficient parallel fabrication process with state-of-the-art replication fidelity, comparable to direct electron beam writing.

2.
Nature ; 441(7090): 199-202, 2006 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-16688172

RESUMO

For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized. The slow progress within silicon optoelectronics, where electronic and optical functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon. Recently, however, a continuous-wave Raman silicon laser was demonstrated; if an effective modulator could also be realized in silicon, data processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top of a silicon waveguide, and the induced nonlinear coefficient, chi(2) approximately 15 pm V(-1), makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck in modern computers by replacing the electronic bus with a much faster optical alternative.

3.
Opt Express ; 14(20): 9444-50, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19529330

RESUMO

We demonstrate a concept for tailoring the group velocity and dispersion properties for light propagating in a planar photonic crystal waveguide. By perturbing the holes adjacent to the waveguide core it is possible to increase the useful bandwidth below the light-line and obtain a photonic crystal waveguide with either vanishing, positive, or negative group velocity dispersion and semi-slow light. We realize experimentally a silicon-on-insulator photonic crystal waveguide having nearly constant group velocity ~c(0)/34 in an 11-nm bandwidth below the silica-line.

4.
Opt Express ; 13(20): 7861-71, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-19498814

RESUMO

We report on time-of-flight experimental measurements and numerical calculations of the group-index dispersion in a photonic crystal waveguide realized in silicon-on-insulator material. Experimentally group indices higher than 230 has been observed. Numerical 2D and 3D time-domain simulations show excellent agreement with the measured data.

5.
Opt Express ; 13(21): 8514-9, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-19498881

RESUMO

We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase-matching wavelength and bandwidth, and a normalised conversion efficiency of 1.4x10-3 %/W/cm2 which, to our knowledge, is the highest obtained so far with periodic glass poling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...