Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Dev Neurosci ; 27(8): 863-71, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19482072

RESUMO

Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain.


Assuntos
Lesões Encefálicas , Deficiências do Desenvolvimento , Recém-Nascido Prematuro , Neurogênese/fisiologia , Animais , Comportamento/fisiologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Humanos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Recém-Nascido , Modelos Animais , Transdução de Sinais/fisiologia
2.
J Neurosci ; 29(4): 1202-11, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19176828

RESUMO

Chronic postnatal hypoxia causes an apparent loss of cortical neurons that is reversed during recovery (Fagel et al., 2006). The cellular and molecular mechanisms underlying this plasticity are not understood. Here, we show that chronic hypoxia from postnatal days 3 (P3) to 10 causes a 30% decrease in cortical neurons and a 24% decrease in cortical volume. T-brain-1 (Tbr1)(+) and SMI-32(+) excitatory neuron numbers were completely recovered 1 month after the insult, but the mice showed a residual deficit in Parvalbumin(+) and Calretinin(+) GABAergic interneurons. In contrast, hypoxic mice carrying a disrupted fibroblast growth factor receptor-1 (Fgfr1) gene in GFAP+ cells [Fgfr1 conditional knock-out (cKO)], demonstrated a persistent loss of excitatory cortical neurons and a worsening of the interneuron defect. Labeling proliferating progenitors at P17 revealed increased generation of cortical NeuN(+) and Tbr1(+) excitatory neurons in wild-type mice subjected to hypoxic insult, whereas Fgfr1 cKO failed to mount a cortical neurogenetic response. Hypoxic wild-type mice also demonstrated a twofold increase in cell proliferation in the subventricular zone (SVZ) at P17 and a threefold increase in neurogenesis in the olfactory bulb (OB) at P48, compared with normoxic mice. In contrast, Fgfr1 cKO mice had decreased SVZ cell proliferation and curtailed reactive neurogenesis in the OB. Thus, the activation of FGFR-1 in GFAP+ cells is required for neuronal recovery after neonatal hypoxic injury, which is attributable in part to enhanced cortical and OB neurogenesis. In contrast, there is incomplete recovery of inhibitory neurons after injury, which may account for persistent behavioral deficits.


Assuntos
Córtex Cerebral/patologia , Hipóxia/patologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Proliferação de Células , Córtex Cerebral/fisiopatologia , Creatinina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Glial Fibrilar Ácida/genética , Hipóxia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Bulbo Olfatório , Parvalbuminas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas com Domínio T
3.
Biol Psychiatry ; 63(10): 953-62, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17988653

RESUMO

BACKGROUND: Motor hyperactivity due to hyper-dopaminergic neurotransmission in the basal ganglia is well characterized; much less is known about the role of the neocortex in controlling motor behavior. METHODS: Locomotor behavior and motor, associative, and spatial learning were examined in mice with conditional null mutations of fibroblast growth factor receptor 1 (Fgfr1) restricted to telencephalic neural precursors (Fgfr1(f/f;hGfapCre)). Locomotor responses to a dopamine agonist (Amphetamine 2 mg/kg and Methylphenidate 10 mg/kg) and antagonists (SCH233390 .025 mg/kg and Haloperidol .2 mg/kg) were assessed. Stereological and morphological characterization of various monoaminergic, excitatory, and inhibitory neuronal subtypes was performed. RESULTS: Fgfr1(f/f;hGfapCre) mice have spontaneous locomotor hyperactivity characterized by longer bouts of locomotion and fewer resting points that is significantly reduced by the D1 and D2 receptor antagonists. No differences in dopamine transporter, tyrosine hydroxylase, or serotonin immunostaining were observed in Fgfr1(f/f;hGfapCre) mice. There was no change in cortical pyramidal neurons, but parvalbumin+, somatostatin+, and calbindin+ inhibitory interneurons were reduced in number in the cerebral cortex. The decrease in parvalbumin+ interneurons in cortex correlated with the extent of hyperactivity. CONCLUSIONS: Dysfunction in specific inhibitory cortical circuits might account for deficits in behavioral control, providing insights into the neurobiology of psychiatric disorders.


Assuntos
Córtex Cerebral/patologia , Fator 1 de Crescimento de Fibroblastos/genética , Hipercinese/genética , Hipercinese/patologia , Inibição Neural/genética , Neurônios/patologia , Anfetamina/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Contagem de Células/métodos , Estimulantes do Sistema Nervoso Central/uso terapêutico , Modelos Animais de Doenças , Dopaminérgicos/administração & dosagem , Comportamento Exploratório/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/deficiência , Glutamato Descarboxilase/metabolismo , Hipercinese/tratamento farmacológico , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Metilfenidato/uso terapêutico , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Neuroscientist ; 13(2): 173-85, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17404377

RESUMO

Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity. Astroglial cells populating the neurogenic niches increase their proliferation after perinatal injury and in young mice can differentiate into neurons and oligodendrocytes that migrate to the cerebral cortex, replacing the cells that are lost. Although much remains to be learned about this process, it appears that the up-regulation of the Fibroblast growth factor receptor is critical for mediating the injury-induced increase in cell division and perhaps for the neuronal differentiation of astroglial cells.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Células-Tronco/metabolismo , Animais , Astrócitos/citologia , Proliferação de Células , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Humanos , Regeneração Nervosa/genética , Plasticidade Neuronal/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Células-Tronco/citologia
5.
Exp Neurol ; 199(1): 77-91, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-15916762

RESUMO

Most regions of the mature mammalian brain, including the cerebral cortex, appear to be unable to support the genesis of new neurons. Here, we report that a low level of neurogenesis occurs in the cerebral cortex of the infant mouse brain and is enhanced by chronic perinatal hypoxia. When mice were reared in a low-oxygen environment from postnatal days 3 to 11, approximately 30% of the cortical neurons were lost after the insult; yet this damage was transient. The loss of cortical neuron number, cortical volume, and brain weight were all reversed during the recovery period. At P18, 7 days after the cessation of hypoxia, there was a marked increase in astroglial cell proliferation within the SVZ, as assessed by 5-bromodeoxyuridine (BrdU) incorporation in S-phase cells. One month after BrdU incorporation, 40% more BrdU-positive cells were found in the cerebral cortex of hypoxic-reared as compared to normoxic control mice. Among these newly generated cortical cells, approximately 45% were oligodendrocytes, 35% were astrocytes, and 10% were neurons in both hypoxic and normoxic mice. However, twice as many BrdU-labeled cells expressed neuronal markers in the neocortex in mice recovering from hypoxia as compared to controls. In both hypoxic-reared and normoxic infant/juvenile mice, putative neuroblasts could be seen detaching from the forebrain subventricular zone, migrating through the subcortical white matter and entering the lower cortical layers, 5 to 11 days after their last mitotic division. We suggest that cortical neurogenesis may play a significant role in repairing neuronal losses after neonatal injury.


Assuntos
Córtex Cerebral/patologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Diferenciação Celular/fisiologia , Proliferação de Células , Tamanho Celular , Córtex Cerebral/crescimento & desenvolvimento , Ventrículos Cerebrais/fisiologia , Proteínas ELAV/metabolismo , Imuno-Histoquímica/métodos , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Fosfopiruvato Hidratase/metabolismo , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...