Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541739

RESUMO

Early Mars was likely habitable, but could life actually have started there? While cellular life emerged from prebiotic chemistry through a pre-Darwinian selection process relevant to both Earth and Mars, each planet posed unique selection 'hurdles' to this process. We focus on drivers of selection in prebiotic chemistry generic to Earth-like worlds and specific to Mars, such as an iron-rich surface. Iron, calcium, and magnesium cations are abundant in hydrothermal settings on Earth and Mars, a promising environment for an origin of life. We investigated the impact of cations on the stability and disruption of different primitive cell membranes under different pH conditions. The relative destabilizing effect of cations on membranes observed in this study is Ca2+ > Fe2+ > Mg2+. Cation concentrations in Earth systems today are too low to disrupt primitive membranes, but on Mars concentrations could have been elevated enough to disrupt membranes during surface dehydration. Membranes and RNA interact during dehydration-rehydration cycles to mutually stabilize each other in cation-rich solutions, and optimal membrane composition can be 'selected' by environmental factors such as pH and cation concentrations. We introduce an approach that considers how life may have evolved differently under the Martian planetary conditions and selective pressures.

2.
Sci Adv ; 8(47): eabo4856, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417517

RESUMO

Perseverance's Mastcam-Z instrument provides high-resolution stereo and multispectral images with a unique combination of spatial resolution, spatial coverage, and wavelength coverage along the rover's traverse in Jezero crater, Mars. Images reveal rocks consistent with an igneous (including volcanic and/or volcaniclastic) and/or impactite origin and limited aqueous alteration, including polygonally fractured rocks with weathered coatings; massive boulder-forming bedrock consisting of mafic silicates, ferric oxides, and/or iron-bearing alteration minerals; and coarsely layered outcrops dominated by olivine. Pyroxene dominates the iron-bearing mineralogy in the fine-grained regolith, while olivine dominates the coarse-grained regolith. Solar and atmospheric imaging observations show significant intra- and intersol variations in dust optical depth and water ice clouds, as well as unique examples of boundary layer vortex action from both natural (dust devil) and Ingenuity helicopter-induced dust lifting. High-resolution stereo imaging also provides geologic context for rover operations, other instrument observations, and sample selection, characterization, and confirmation.

3.
Space Sci Rev ; 216(8)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33568875

RESUMO

The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.

4.
Bull Volcanol ; 79(1): 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32269405

RESUMO

Volcanic rootless cones are the products of thermohydraulic explosions involving rapid heat transfer from active lava (fuel) to external sources of water (coolant). Rootless eruptions are attributed to molten fuel-coolant interactions (MFCIs), but previous studies have not performed systematic investigations of rootless tephrostratigraphy and grain-size distributions to establish a baseline for evaluating relationships between environmental factors, MFCI efficiency, fragmentation, and patterns of tephra dispersal. This study examines a 13.55-m-thick vertical section through an archetypal rootless tephra sequence, which includes a rhythmic succession of 28 bed pairs. Each bed pair is interpreted to be the result of a discrete explosion cycle, with fine-grained basal material emplaced dominantly as tephra fall during an energetic opening phase, followed by the deposition of coarser-grained material mainly as ballistic ejecta during a weaker coda phase. Nine additional layers are interleaved throughout the stratigraphy and are interpreted to be dilute pyroclastic density current (PDC) deposits. Overall, the stratigraphy divides into four units: unit 1 contains the largest number of sediment-rich PDC deposits, units 2 and 3 are dominated by a rhythmic succession of bed pairs, and unit 4 includes welded layers. This pattern is consistent with a general decrease in MFCI efficiency due to the depletion of locally available coolant (i.e., groundwater or wet sediments). Changing conduit/vent geometries, mixing conditions, coolant and melt temperatures, and/or coolant impurities may also have affected MFCI efficiency, but the rhythmic nature of the bed pairs implies a periodic explosion process, which can be explained by temporary increases in the water-to-lava mass ratio during cycles of groundwater recharge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...