Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Camb Prism Precis Med ; 1: e15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38550923

RESUMO

Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.

3.
Neurobiol Dis ; 69: 134-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24851801

RESUMO

Several lines of evidence suggest that accumulation of aggregated alpha-synuclein (α-synuclein) in the central nervous system (CNS) is an early pathogenic event in Parkinson's disease and other Lewy body disorders. In recent years, animal studies have indicated immunotherapy with antibodies directed against α-synuclein as a promising novel treatment strategy. Since large α-synuclein oligomers, or protofibrils, have been demonstrated to possess pronounced cytotoxic properties, such species should be particularly attractive as therapeutic targets. In support of this, (Thy-1)-h[A30P] α-synuclein transgenic mice with motor dysfunction symptoms were found to display increased levels of α-synuclein protofibrils in the CNS. An α-synuclein protofibril-selective monoclonal antibody (mAb47) was evaluated in this α-synuclein transgenic mouse model. As measured by ELISA, 14month old mice treated for 14weeks with weekly intraperitoneal injections of mAb47 displayed significantly lower levels of both soluble and membrane-associated protofibrils in the spinal cord. Besides the lower levels of pathogenic α-synuclein demonstrated, a reduction of motor dysfunction in transgenic mice upon peripheral administration of mAb47 was indicated. Thus, immunotherapy with antibodies targeting toxic α-synuclein species holds promise as a future disease-modifying treatment in Parkinson's disease and related disorders.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunização Passiva , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Encéfalo/imunologia , Encéfalo/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Injeções Intraperitoneais , Masculino , Camundongos Transgênicos , Atividade Motora/fisiologia , Mutação , Transtornos Parkinsonianos/imunologia , Índice de Gravidade de Doença , Medula Espinal/imunologia , Medula Espinal/patologia , alfa-Sinucleína/genética
4.
Immunotherapy ; 6(2): 141-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24491088

RESUMO

Immunotherapy targeting α-synuclein has evolved as a potential therapeutic strategy for neurodegenerative diseases, such as Parkinson's disease, and initial studies on cellular and animal models have shown promising results. α-synuclein vaccination of transgenic mice reduced the number of brain inclusions, whereas passive immunization studies demonstrated that antibodies against the C-terminus of α-synuclein can pass the blood-brain barrier and affect the pathology. In addition, preliminary evidence suggests that transgenic mice treated with an antibody directed against α-synuclein oligomers/protofibrils resulted in reduced levels of such species in the CNS. The underlying mechanisms of immunotherapy are not yet fully understood, but may include antibody-mediated clearance of pre-existing aggregates, prevention of protein propagation between cells and microglia-dependent protein clearance. Thus, immunotherapy targeting α-synuclein holds promise, but needs to be further developed as a future disease-modifying treatment in Parkinson's disease and other α-synucleinopathies.


Assuntos
Imunoterapia , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/terapia , Doença de Parkinson/terapia , alfa-Sinucleína/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Humanos , Imunoterapia/tendências , Doença por Corpos de Lewy/imunologia , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Doença de Parkinson/imunologia , Resposta a Proteínas não Dobradas/imunologia , alfa-Sinucleína/genética
5.
Amyloid ; 20(4): 233-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24053224

RESUMO

Aggregated α-synuclein is the major component of Lewy bodies, protein inclusions observed in the brain in neurodegenerative disorders such as Parkinson's disease and dementia with Lewy bodies. Experimental evidence indicates that α-synuclein potentially can be transferred between cells and act as a seed to accelerate the aggregation process. Here, we investigated in vitro and in vivo seeding effects of α-synuclein oligomers induced by the reactive aldehyde 4-oxo-2-nonenal (ONE). As measured by a Thioflavin-T based fibrillization assay, there was an earlier onset of aggregation when α-synuclein oligomers were added to monomeric α-synuclein. In contrast, exogenously added α-synuclein oligomers did not induce aggregation in a cell model. However, cells overexpressing α-synuclein that were treated with the oligomers displayed reduced α-synuclein levels, indicating that internalized oligomers either decreased the expression or accelerated the degradation of transfected α-synuclein. Also in vivo there were no clear seeding effects, as intracerebral injections of α-synuclein oligomers into the neocortex of α-synuclein transgenic mice did not induce formation of proteinase K resistant α-synuclein pathology. Taken together, we could observe a seeding effect of the ONE-induced α-synuclein oligomers in a fibrillization assay, but neither in a cell nor in a mouse model.


Assuntos
alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Aldeídos/química , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
6.
J Neurochem ; 126(1): 131-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23363402

RESUMO

Inclusions of intraneuronal alpha-synuclein (α-synuclein) can be detected in brains of patients with Parkinson's disease and dementia with Lewy bodies. The aggregation of α-synuclein is a central feature of the disease pathogenesis. Among the different α-synuclein species, large oligomers/protofibrils have particular neurotoxic properties and should therefore be suitable as both therapeutic and diagnostic targets. Two monoclonal antibodies, mAb38F and mAb38E2, with high affinity and strong selectivity for large α-synuclein oligomers were generated. These antibodies, which do not bind amyloid-beta or tau, recognize Lewy body pathology in brains from patients with Parkinson's disease and dementia with Lewy bodies and detect pathology earlier in α-synuclein transgenic mice than linear epitope antibodies. An oligomer-selective sandwich ELISA, based on mAb38F, was set up to analyze brain extracts of the transgenic mice. The overall levels of α-synuclein oligomers/protofibrils were found to increase with age in these mice, although the levels displayed a large interindividual variation. Upon subcellular fractionation, higher levels of α-synuclein oligomers/protofibrils could be detected in the endoplasmic reticulum around the age when behavioral disturbances develop. In summary, our novel oligomer-selective α-synuclein antibodies recognize relevant pathology and should be important tools to further explore the pathogenic mechanisms in Lewy body disorders. Moreover, they could be potential candidates both for immunotherapy and as reagents in an assay to assess a potential disease biomarker.


Assuntos
Anticorpos Monoclonais/farmacologia , Encéfalo/patologia , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/imunologia , Animais , Western Blotting , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Epitopos , Formiatos/química , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação/genética , Mutação/fisiologia , Frações Subcelulares/metabolismo
7.
Free Radic Biol Med ; 50(3): 428-37, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21130160

RESUMO

Oxidative stress has been implicated in the etiology of neurodegenerative disorders with α-synuclein pathology. Lipid peroxidation products such as 4-oxo-2-nonenal (ONE) and 4-hydroxy-2-nonenal (HNE) can covalently modify and structurally alter proteins. Herein, we have characterized ONE- or HNE-induced α-synuclein oligomers. Our results demonstrate that both oligomers are rich in ß-sheet structure and have a molecular weight of about 2000 kDa. Atomic force microscopy analysis revealed that ONE-induced α-synuclein oligomers were relatively amorphous, with a diameter of 40-80 nm and a height of 4-8 nm. In contrast, the HNE-induced α-synuclein oligomers had a protofibril-like morphology with a width of 100-200 nm and a height of 2-4 nm. Furthermore, neither oligomer type polymerized into amyloid-like fibrils despite prolonged incubation. Although more SDS and urea stable, because of a higher degree of cross-linking, ONE-induced α-synuclein oligomers were less compact and more sensitive to proteinase K treatment. Finally, both ONE- and HNE-induced α-synuclein oligomers were cytotoxic when added exogenously to a neuroblastoma cell line, but HNE-induced α-synuclein oligomers were taken up by the cells to a significantly higher degree. Despite nearly identical chemical structures, ONE and HNE induce the formation of off-pathway α-synuclein oligomers with distinct biochemical, morphological, and functional properties.


Assuntos
Aldeídos/farmacologia , Peroxidação de Lipídeos , alfa-Sinucleína/metabolismo , Aldeídos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Células Tumorais Cultivadas , alfa-Sinucleína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...