Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 93(6): 906-920, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33190320

RESUMO

Bi-metallic and tri-metallic metal-organic frameworks (MOFs) supported on the magnetic activated carbon (MAC) were synthesized for the reduction of methylene blue (MB) concentration in the aqueous solutions. The adsorbent nanocomposites were characterized by applying the general tests including XRD, FTIR, FESEM, TEM, BET, and VSM. The XRD achievements demonstrated that crystalline structure of MOFs was derived on the MAC by the presented method. The core-shell morphology with nano-scale size of the magnetic carbonaceous MOFs was detected in TEM and FESEM micro-images. The acceptable magnetic strength of the prepared adsorbents was proved by using the VSM analysis. The important operating conditions including pH and temperature were also evaluated, while the other parameters were kept constant. The pseudo-second-order kinetic model was matched with the experimental data to show the kinetic behavior of the multi-component MOFs. The isotherm studies showed that the good agreement between the experimental data with both Langmuir model and the maximum capacities was calculated to be about 66.51 and 71.43 mg/g for the bi-metallic and tri-metallic nanocomposites, respectively. Regeneration experiments indicated that the fabricated adsorbents have an excellent reusing adsorption capacity which can be a proper selection for the industrial applications. PRACTITIONER POINTS: Bi-metallic and tri-metallic MOFs supported on the magnetic activated carbon were synthesized by the facile preparation method. Adsorption of methylene blue by using MOFs were successfully done. Nanocomposites were evaluated by XRD, FTIR, BET, FESEM, TEM, and VSM techniques. Maximum of adsorption capacity was observed for tri-metallic MOF as 71.43 mg/g.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Poluentes Químicos da Água , Adsorção , Cinética , Fenômenos Magnéticos , Azul de Metileno
2.
Ultrason Sonochem ; 39: 188-196, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732935

RESUMO

Molybdenum disulfide (MoS2), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...