Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent ; 101: 103413, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32585262

RESUMO

OBJECTIVE: Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are types of human dental tissue-derived mesenchymal stem cells (MSCs) that have emerged as an interesting and promising source of stem cells in the field of tissue engineering. The aim of this work is to isolate stem cells from DPSCs and SHED, cultivate them in vitro and compare their odontogenic differentiation potential. METHODS: DPSCs and SHED were extracted from molars, premolars and canines of six healthy subjects aged 5-29 years. The cells were characterized, using flow cytometry, for mesenchymal stem cell surface markers. MTT colorimetric assay was applied to assess cell viability. Alizarin red staining, alkaline phosphatase (ALP) activity, quantitative real-time PCR (qRT-PCR) and western blot were carried out to determine DPSCs and SHED osteogenic/odontogenic differentiation. RESULTS: DPSCs express higher STRO-1 and CD44 levels compared to SHED. Moreover, the cells differentiate and acquire columnar shape with a level of calcium deposition and mineralization that is the same between DPSCs and SHED. ALP activity, ALP, COLI, DMP-1, DSPP, OC, and RUNX2 (osteogenic/odontogenic differentiation markers) expression levels were higher in DPSCs. CONCLUSIONS: DPSCs and SHED express MSCs markers. Although both cell types had calcium deposits, DPSCs presented a higher ALP activity level. In addition, DPSCs showed higher levels of osteogenic and odontogenic differentiation markers such as COLI, DSPP, OC, RUNX2, and DMP-1. These results suggest that DPSCs are closer to the phenotype of odontoblasts than SHED and may improve the efficacy of human dental tissue-derived mesenchymal stem cells therapeutic protocols. 'CLINICAL SIGNIFICANCE': DPSCs are closer than t SHED to the phenotype of odontoblasts. This would be helpful to enable better therapeutic decisions when applying MSCs-based therapy in the field of dentistry.


Assuntos
Polpa Dentária , Odontogênese , Adolescente , Adulto , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Humanos , Osteogênese , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...