Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 211: 203-211, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659251

RESUMO

The present study was designed to establish a suitable alternative approach to mitigate the adverse effect of high culture temperature on in vitro embryo development and the related molecular response in buffalo. Pre-cultured granulosa cells (GCs) were used as a monolayer during in vitro embryo culture until day 8 (day of fertilization = D0). Post fertilization, presumptive embryos were randomly assigned into two culture conditions: embryos cultured in the presence of GCs monolayer under normal culture temperature (N: 38.5 °C; GEN group) or heat shock (H: 40.5 °C; GEH group) and their counterpart groups of embryos cultured without GCs (EN and EH groups). Additionally, two groups of GCs monolayer were cultured without embryos up to day 8 under 38.5 °C (GN) or 40.5 °C (GH) for further spent culture media enzymatic analyses. Heat shock was administered for the first 2 h of culture then continued at 38.5 °C until day 8. The results indicated that under heat treatment, GCs enhanced (P ≤ 0.05) embryo cleavage and development (day 8) rates, which were comparable to the embryos cultured at 38.5 °C. On the molecular level, blastocysts of the GEH group showed similar expressions of metabolism-regulating genes (CPT2 and SlC2A1/GLUT1) and an antioxidant gene (SOD2) when compared to the blastocysts of the EN group. The relative expression of HSP90 was significantly up-regulated under heat shock and/or co-culture conditions. However, HSF1 expression was increased (P ≤ 0.05) in the GEH group. No statistical differences were observed among the study groups for the pluripotency gene NANOG, and stress resistance transcript NFE2L2. Regarding the enzymatic profile, the concentrations of SOD, total protein, and MDA were decreased (P ≤ 0.05) in the GEH group compared to the cultured GCs without embryos (GH group). In conclusion, GCs as a monolayer have a beneficial impact on alleviating heat stress at the zygote stage through the regulatory mechanisms of metabolic activity, defense system, and heat shock response genes.


Assuntos
Bison , Búfalos , Animais , Feminino , Técnicas de Cocultura/veterinária , Antioxidantes , Células da Granulosa
2.
Animals (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809236

RESUMO

The steroidogenesis capacity and adaptive response of follicular granulosa cells (GCs) to heat stress were assessed together with the underlying regulating molecular mechanisms in Egyptian buffalo. In vitro cultured GCs were exposed to heat stress treatments at 39.5, 40.5, or 41.5 °C for the final 24 h of the culture period (7 days), while the control group was kept under normal conditions (37 °C). Comparable viability was observed between the control and heat-treated GCs at 39.5 and 40.5 °C. A higher release of E2, P4 and IGF-1 was observed in the 40.5 °C group compared with the 39.5 or 41.5 °C groups. The total antioxidant capacity was higher in response to heat stress at 39.5 °C. At 40.5 °C, a significant upregulation pattern was found in the expression of the stress resistance transcripts (SOD2 and NFE2L2) and of CPT2. The relative abundance of ATP5F1A was significantly downregulated for all heat-treated groups compared to the control, while TNFα was downregulated in GCs at 39.5 °C. Expression analyses of stress-related miRNAs (miR-1246, miR-181a and miR-27b) exhibited a significant downregulation in the 40.5 °C group compared to the control, whereas miR-708 was upregulated in the 39.5 and 40.5 °C groups. In conclusion, buffalo GCs exhibited different adaptive responses, to the different heat stress conditions. The integration mechanism between the molecular and secretory actions of the GCs cultured at 40.5 °C might provide possible insights into the biological mechanism through which buffalo GCs react to heat stress.

3.
Zygote ; 29(4): 314-324, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33622439

RESUMO

This study was conducted to monitor the cellular and molecular changes of buffalo cumulus-oocytes complexes (COCs) cultured under high or low oxygen levels. Morphologically good quality COCs (n = 1627) were screened using brilliant cresyl blue (BCB) staining and placed into three groups (BCB+, BCB- and control). All groups of COCs were cultured under low (5%) or high (20%) oxygen tensions. Intracellular and molecular changes including oocyte ultrastructure, lipid contents, mitochondrial activity and transcript abundance of genes regulating different pathways were analyzed in the matured oocyte groups. The results revealed that oxygen tension did not affect cumulus expansion rates, however the BCB+ group had a higher (P ≤ 0.05) expansion rate compared with the BCB- group. BCB- oocytes recorded the lowest meiotic progression rate (P ≤ 0.05) under high oxygen levels that was linked with an increased level of reactive oxygen species (ROS) compared with the BCB+ oocytes. Ultrastructure examination indicated that BCB+ oocytes had a higher rate of cortical granules migration compared with BCB- under low oxygen tension. In parallel, our results indicated the upregulation of NFE2L2 in groups of oocytes cultured under high oxygen tension that was coupled with reduced mitochondrial activity. In contrast, the expression levels of MAPK14 and CPT2 genes were increased (P ≤ 0.05) in groups of oocytes cultured under low compared with high oxygen tension that was subsequently associated with increased mitochondrial activity. In conclusion, data from the present investigation indicated that low oxygen tension is a favourable condition for maintaining the mitochondrial activity required for nuclear maturation of buffalo oocytes. However, low-quality oocytes (BCB-) responded negatively to high oxygen tension by reducing the expression of gene-regulating metabolic activity (CPT2). This action was an attempt by BCB- oocytes to reduce the increased levels of endogenously produced ROS that was coupled with decreased expression of the gene controlling meiotic progression (MAPK14) in addition to nuclear maturation rate.


Assuntos
Búfalos , Técnicas de Maturação in Vitro de Oócitos , Animais , Células do Cúmulo , Feminino , Oócitos , Oxazinas , Oxigênio
4.
Anim Reprod Sci ; 224: 106665, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33307488

RESUMO

The physiological and molecular responses of granulosa cells (GCs) from buffalo follicles were investigated when there were in vitro heat stress conditions imposed. The cultured GCs were heat-treated at 40.5 °C for 24, 48 or 72 h while GCs of the control group were not heat-treated (37 °C). There were no differences in viability between control and heat-treated groups. There was an upward trend in increase in E2 secretion as the duration of heat stress advanced, being greater (P ≤ 0.05) for the GCs on which heat stress was imposed for 72 as compared with 24 h. In contrast, P4 release was less (P ≤ 0.05) from GCs heat-treated for 48 h than those cultured for 24 h and GCs of the control group. The relative abundance of ATP5F1A and SOD2 mRNA transcripts was consistent throughout the period when there was imposing of heat stress to sustain mitochondrial function. The relative abundance of CPT2 transcript was less in heat-treated GCs than in GCs of the control group. There was a greater relative abundance of SREBP1 and TNF-α mRNA transcripts after 48 h of heat-treatment of GCs than GCs of the control group. In conclusion, the results from the current study indicate buffalo GCs cultured when there was imposing of heat stress maintained normal viability, steroidogenesis and transcriptional profile. The stability of antioxidant status and increased transcription of genes regulating cholesterol biosynthesis and stress resistance may be defense mechanisms of buffalo GCs against heat stress.


Assuntos
Búfalos/fisiologia , Células da Granulosa/fisiologia , Temperatura Alta , Animais , Antioxidantes/metabolismo , Sobrevivência Celular , Células Cultivadas , Estrogênios/metabolismo , Feminino , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , Progesterona/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Zygote ; 25(3): 383-389, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28592345

RESUMO

The exposure of oocytes to heat stress during the maturation process results in harmful effects to their internal organelles, low fertilization capability and higher embryonic losses. In the present experiment the effect of heat shock (HS) during the maturation process was assessed. In Assay 1, oocytes from winter (December-March; n = 100) and summer (June-September; n = 100) months were collected and matured to analyse their HS tolerance. Total RNA was extracted from matured oocytes and cDNA synthesis was performed, followed by qPCR for selected genes (Cx43, CDH1, DNMT1, HSPA14), compared with two reference genes (GAPDH and SDHA). In Assay 2, oocytes collected during the winter were subjected to kinetic HS by stressing them at 39.5°C for 6, 12, 18 or 24 h and were afterwards matured at control temperature (38.5°C), and subsequently subjected to the previously described gene analysis procedure. Results of Assay 1 show that summer-collected oocytes exhibited lower maturation rate than winter-collected oocytes, which may be due to the down-regulation of the HSPA 14 gene. Assay 2 showed that 6 h of HS had no effect on gene regulation. CDH1 and DNMT1 up-regulation was observed starting at 12 h, which may represent the effect of heat shock on oocyte development.


Assuntos
Regulação da Expressão Gênica , Resposta ao Choque Térmico , Oócitos/fisiologia , Animais , Caderinas/genética , Bovinos , Conexina 43/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Feminino , Proteínas de Choque Térmico HSP70/genética , Técnicas de Maturação in Vitro de Oócitos/métodos , Estações do Ano
6.
Asian-Australas J Anim Sci ; 28(3): 334-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656191

RESUMO

The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: 38° 43' N 27° 12' W) can affect dairy cow (Holstein) fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS) effects on in vitro oocyte's maturation and further embryo development after in vitro fertilization (IVF) was also evaluated. For such purpose the result of the first artificial insemination (AI) performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5) from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI) was calculated. For in vitro experiments, oocytes (n = 706) were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March) and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = 38.5°C), HS1 (39.5°C) and HS2 (40.5°C). Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow's conception rate (CR) and THI in grazing points (-91.3%; p<0.001) was observed. Mean THI in warmer months (June, July, August and September) was 71.7±0.7 and the CR (40.2±1.5%) while in cold months THI was 62.8±0.2 and CR was 63.8±0.4%. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR) ranged from 78.4% (±8.0) to 44.3% (±8.1), while embryos development ranged from 53.8% (±5.8) to 36.3% (±3.3) in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05) on NMR of oocytes for every 1°C rising temperature (78.4±8.0, 21.7±3.1 and 8.9±2.2, respectively for C, HS1, and HS2). Similar results were observed in cleavage rate and embryo development, showing a clear correlation (96.9 p<0.05) between NMR and embryo development with respect to temperatures. Results clearly demonstrated that, up to a THI of 70.6, a decrease in the CR occurs in first AI after calving; this impairment was confirmed with in vitro results.

7.
Zygote ; 23(6): 933-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25424305

RESUMO

Immature bovine oocytes were vitrified using the cryotop method and their post-warming survivability and capability to undergo in vitro maturation, fertilization and subsequent embryonic development were evaluated. In addition throughout the embryonic 2-cell, 4-cell, morula and blastocyst stages, the expression of four developmentally important genes (Cx43, CDH1, DNMT1 and HSPA14) was analysed using the real-time polymerase chain reaction (PCR). Immature oocytes (n = 550) were randomly assigned to non-vitrified (fresh) or cryotop vitrification groups using ethylene glycol (EG) with 1,2 propanediol (PROH) or dimethylsulphoxide (DMSO). After warming, oocytes survivability, embryo cleavage and embryonic developmental rates were not statistically different between the two cryoprotectants groups. However, the DMSO group had a lower (P < 0.05) oocyte maturation rate compared with the fresh and PROH groups. For morula and blastocyst rates, the DMSO group achieved a lower (P < 0.05) morula rate compared with the fresh group, while at the blastocyst stage, there were no differences between fresh and both cryoprotectants groups. For molecular analysis, at the 4-cell stage, most studied genes showed an inconsistent pattern of expression either from the PROH or DMSO groups. Noteworthily, these differences were limited at the morula and blastocyst stages. In conclusion, the cryotop method is sufficient for vitrification of immature bovine oocytes, both for embryonic developmental competence and at the molecular level. Moreover, PROH showed some advantage over DMSO as a cryoprotectant.


Assuntos
Blastocisto/fisiologia , Criopreservação/métodos , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/fisiologia , Vitrificação , Animais , Caderinas/genética , Bovinos , Conexina 43/genética , Crioprotetores/farmacologia , DNA (Citosina-5-)-Metiltransferases/genética , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Feminino , Fertilização in vitro/métodos , Proteínas de Choque Térmico HSP70/genética , Masculino , Mórula/fisiologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Propilenoglicol/farmacologia
8.
Anim Reprod Sci ; 125(1-4): 49-55, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21411252

RESUMO

This study was undertaken to assess dissection/puncture combined technique for collecting large number of oocytes from bovine ovaries and to determine the effect of ovarian tissue cryopreservation on the oocytes capability to undergo in vitro maturation, fertilization and subsequent embryonic development. Ovaries (n=31) of slaughtered cows were cut into small fragments using a scalpel blade and the ovarian tissues were randomly assigned to cryopreserved by slow freezing and vitrification and non cryopreserved (fresh) groups. Oocytes were collected from non-atretic follicles from fresh and post-thawing ovarian tissue by the puncture method. The advantage of this technique appeared through morphologically good quality cumulus-oocyte complex (COC) recovery rate from fresh tissue (31.7±2.0 oocytes/ovary). However, the cryopreservation affected the post thawing total and good quality COC recovery rates from slow freezing (26.6±2.0 and 23.5±2.3 oocytes/ovary, respectively) and vitrification groups (21.7±1.1 and 17.6±1.8 oocyte/ovary, respectively). The maturation rate resulted in significant differences between the fresh tissue (94.1±1.1%) and the two cryopreservation groups. Moreover, this rate was significantly higher in the slow freezing group (80.1±1.3%) than in the vitrification group (73.0±1.9%). No statistical differences were observed in the cleavage and the embryonic developmental rates between fresh tissue group and cryopreservation groups. Furthermore the number of embryos produced per animal was statistically higher for fresh tissues than for slow freezing and the vitrification groups (34.4±1.4, 27.8±3.1 and 22.0±0.7, respectively). In conclusion, dissection method followed by puncture of bovine ovaries greatly maximizes the number of good quality oocytes recovered, as well as the number of embryos obtained per animal. Ovarian tissue can be successfully cryopreserved by slow freezing and vitrification.


Assuntos
Bovinos/fisiologia , Criopreservação/veterinária , Desenvolvimento Embrionário/fisiologia , Fertilização in vitro/veterinária , Oócitos/fisiologia , Ovário/fisiologia , Preservação de Tecido/veterinária , Animais , Criopreservação/métodos , Feminino , Ovário/citologia , Distribuição Aleatória , Preservação de Tecido/métodos , Vitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...