Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(2): 243-248, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38314708

RESUMO

ß-Hairpin peptides with RNA-binding sequences mimicking the central two ß-strands of the RNA recognition motif (RRM) protein domain have been observed to bind in a 2:1 fashion to a series of RNA homooligonucleotides in aqueous solution (PBS buffer, pH 7.40) with binding energies (-27 to -35 kJ mol-1) similar to those of full-size protein RRMs. The peptides display mild selectivities with respect to the binding of the different homooligomers. Binding studies in 500 mM magnesium chloride suggest that the complex formation is not predominantly driven by Coulombic attraction. These peptides represent a starting point for further studies of non-Coulombic binding of RNA by peptides and proteins, which is important in the context of contemporary biology, potential therapeutic applications, and prebiotic peptide-RNA interactions.


Assuntos
Motivo de Reconhecimento de RNA , RNA , RNA/metabolismo , Peptídeos/metabolismo , Ligação Proteica
2.
Chem Sci ; 14(35): 9589-9599, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712016

RESUMO

The formose reaction is often cited as a prebiotic source of sugars and remains one of the most plausible forms of autocatalysis on the early Earth. Herein, we investigated how cyanamide and 2-aminooxazole, molecules proposed to be present on early Earth and precursors for nonenzymatic ribonucleotide synthesis, mediate the formose reaction using HPLC, LC-MS and 1H NMR spectroscopy. Cyanamide was shown to delay the exponential phase of the formose reaction by reacting with formose sugars to form 2-aminooxazole and 2-aminooxazolines thereby diverting some of these sugars from the autocatalytic cycle, which nonetheless remains intact. Masses for tetrose and pentose aminooxazolines, precursors for nucleotide synthesis including TNA and RNA, were also observed. The results of this work in the context of the chemoton model are further discussed. Additionally, we highlight other prebiotically plausible molecules that could have mediated the formose reaction and alternative prebiotic autocatalytic systems.

3.
J Am Chem Soc ; 145(41): 22483-22493, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37722081

RESUMO

Autocatalysis has been proposed to play critical roles during abiogenesis. These proposals are at odds with a limited number of known examples of abiotic (and, in particular, inorganic) autocatalytic systems that might reasonably function in a prebiotic environment. In this study, we broadly assess the occurrence of stoichiometries that can support autocatalytic chemical systems through comproportionation. If the product of a comproportionation reaction can be coupled with an auxiliary oxidation or reduction pathway that furnishes a reactant, then a Comproportionation-based Autocatalytic Cycle (CompAC) can exist. Using this strategy, we surveyed the literature published in the past two centuries for reactions that can be organized into CompACs that consume some chemical species as food to synthesize more autocatalysts. 226 CompACs and 44 Broad-sense CompACs were documented, and we found that each of the 18 groups, lanthanoid series, and actinoid series in the periodic table has at least two CompACs. Our findings demonstrate that stoichiometric relationships underpinning abiotic autocatalysis could broadly exist across a range of geochemical and cosmochemical conditions, some of which are substantially different from the modern Earth. Meanwhile, the observation of some autocatalytic systems requires effective spatial or temporal separation between the food chemicals while allowing comproportionation and auxiliary reactions to proceed, which may explain why naturally occurring autocatalytic systems are not frequently observed. The collated CompACs and the conditions in which they might plausibly support complex, "life-like" chemical dynamics can directly aid an expansive assessment of life's origins and provide a compendium of alternative hypotheses concerning false-positive biosignatures.


Assuntos
Planeta Terra , Catálise
4.
JACS Au ; 3(9): 2522-2535, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772180

RESUMO

Carbohydrate biosynthesis is fundamental to modern terrestrial biochemistry, but how this collection of metabolic pathways originated remains an open question. Prebiotic sugar synthesis has focused primarily on the formose reaction and Kiliani-Fischer homologation; however, how they can transition to extant biochemical pathways has not been studied. Herein, a nonenzymatic pathway for pentose production with similar chemical transformations as those of the pentose phosphate pathway is demonstrated. Starting from a C6 aldonate, namely, gluconate, nonselective chemical oxidation yields a mixture of 2-oxo-, 4-oxo-, 5-oxo-, and 6-oxo-uronate regioisomers. Regardless at which carbinol the oxidation takes place, carbonyl migration enables ß-decarboxylation to yield pentoses. In comparison, the pentose phosphate pathway selectively oxidizes 6-phosphogluconate to afford the 3-oxo-uronate derivative, which undergoes facile subsequent ß-decarboxylation and carbonyl migration to afford ribose 5-phosphate. The similarities between these two pathways and the potential implications for prebiotic chemistry and protometabolism are discussed.

5.
Chem Commun (Camb) ; 59(45): 6865-6868, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195424

RESUMO

We report the co-polymerization of glycol nucleic acid (GNA) monomers with unsubstituted and substituted dicarboxylic acid linkers under plausible early Earth aqueous dry-down conditions. Both linear and branched co-polymers are produced. Mechanistic aspects of the reaction and potential roles of these polymers in prebiotic chemistry are discussed.

6.
Life (Basel) ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295030

RESUMO

The origin of life on Earth required myriads of chemical and physical processes. These include the formation of the planet and its geological structures, the formation of the first primitive chemicals, reaction, and assembly of these primitive chemicals to form more complex or functional products and assemblies, and finally the formation of the first cells (or protocells) on early Earth, which eventually evolved into modern cells. Each of these processes presumably occurred within specific prebiotic reaction environments, which could have been diverse in physical and chemical properties. While there are resources that describe prebiotically plausible environments or nutrient availability, here, we attempt to aggregate the literature for the various physicochemical properties of different prebiotic reaction microenvironments on early Earth. We introduce a handful of properties that can be quantified through physical or chemical techniques. The values for these physicochemical properties, if they are known, are then presented for each reaction environment, giving the reader a sense of the environmental variability of such properties. Such a resource may be useful for prebiotic chemists to understand the range of conditions in each reaction environment, or to select the medium most applicable for their targeted reaction of interest for exploratory studies.

7.
Sci Rep ; 11(1): 1743, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462313

RESUMO

The architectural features of cellular life and its ecologies at larger scales are built upon foundational networks of reactions between molecules that avoid a collapse to equilibrium. The search for life's origins is, in some respects, a search for biotic network attributes in abiotic chemical systems. Radiation chemistry has long been employed to model prebiotic reaction networks, and here we report network-level analyses carried out on a compiled database of radiolysis reactions, acquired by the scientific community over decades of research. The resulting network shows robust connections between abundant geochemical reservoirs and the production of carboxylic acids, amino acids, and ribonucleotide precursors-the chemistry of which is predominantly dependent on radicals. Moreover, the network exhibits the following measurable attributes associated with biological systems: (1) the species connectivity histogram exhibits a heterogeneous (heavy-tailed) distribution, (2) overlapping families of closed-loop cycles, and (3) a hierarchical arrangement of chemical species with a bottom-heavy energy-size spectrum. The latter attribute is implicated with stability and entropy production in complex systems, notably in ecology where it is known as a trophic pyramid. Radiolysis is implicated as a driver of abiotic chemical organization and could provide insights about the complex and perhaps radical-dependent mechanisms associated with life's origins.

8.
Life (Basel) ; 10(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339192

RESUMO

A prevailing strategy in origins of life studies is to explore how chemistry constrained by hypothetical prebiotic conditions could have led to molecules and system level processes proposed to be important for life's beginnings. This strategy has yielded model prebiotic reaction networks that elucidate pathways by which relevant compounds can be generated, in some cases, autocatalytically. These prebiotic reaction networks provide a rich platform for further understanding and development of emergent "life-like" behaviours. In this review, recent advances in experimental and analytical procedures associated with classical prebiotic reaction networks, like formose and Miller-Urey, as well as more recent ones are highlighted. Instead of polymeric networks, i.e., those based on nucleic acids or peptides, the focus is on small molecules. The future of prebiotic chemistry lies in better understanding the genuine complexity that can result from reaction networks and the construction of a centralised database of reactions useful for predicting potential network evolution is emphasised.

9.
Nat Chem ; 12(11): 982-985, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33093678
10.
Proc Natl Acad Sci U S A ; 117(24): 13267-13274, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32487725

RESUMO

Continuous reaction networks, which do not rely on purification or timely additions of reagents, serve as models for chemical evolution and have been demonstrated for compounds thought to have played important roles for the origins of life such as amino acids, hydroxy acids, and sugars. Step-by-step chemical protocols for ribonucleotide synthesis are known, but demonstrating their synthesis in the context of continuous reaction networks remains a major challenge. Herein, compounds proposed to be important for prebiotic RNA synthesis, including glycolaldehyde, cyanamide, 2-aminooxazole, and 2-aminoimidazole, are generated from a continuous reaction network, starting from an aqueous mixture of NaCl, NH4Cl, phosphate, and HCN as the only carbon source. No well-timed addition of any other reagents is required. The reaction network is driven by a combination of γ radiolysis and dry-down. γ Radiolysis results in a complex mixture of organics, including the glycolaldehyde-derived glyceronitrile and cyanamide. This mixture is then dried down, generating free glycolaldehyde that then reacts with cyanamide/NH3 to furnish a combination of 2-aminooxazole and 2-aminoimidazole. This continuous reaction network models how precursors for generating RNA and other classes of compounds may arise spontaneously from a complex mixture that originates from simple reagents.


Assuntos
Evolução Química , Modelos Químicos , RNA/química , RNA/síntese química , Acetaldeído/análogos & derivados , Acetaldeído/síntese química , Acetaldeído/química , Cianamida/síntese química , Cianamida/química , Raios gama , Imidazóis/síntese química , Imidazóis/química , Origem da Vida , Oxazóis/síntese química , Oxazóis/química , Fotoquímica , Água/química
11.
Astrobiology ; 20(7): 878-888, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32267736

RESUMO

A previously proposed synthesis of pyrimidine ribonucleotides makes use of ultraviolet (UV) light to convert ß-d-ribocytidine-2',3'-cyclic phosphate to ß-d-ribouridine-2',3'-cyclic phosphate, while simultaneously selectively degrading synthetic byproducts. Past studies of the photochemical reactions of pyrimidines have employed mercury arc lamps, characterized by narrowband emission centered at 254 nm, which is not representative of the UV environment of the early Earth. To further assess this process under more realistic circumstances, we investigated the wavelength dependence of the UV-driven conversion of ß-d-ribocytidine-2',3'-cyclic phosphate to ß-d-ribouridine-2',3'-cyclic phosphate. We used constraints provided by planetary environments to assess the implications for pyrimidine nucleotides on the early Earth. We found that the wavelengths of light (255-285 nm) that most efficiently drive the deamination of ß-d-ribocytidine-2',3'-cyclic phosphate to ß-d-ribouridine-2',3'-cyclic phosphate are accessible on planetary surfaces such as those of the Hadean-Archaean Earth for CO2-N2-dominated atmospheres. However, continued irradiation could eventually lead to low levels of ribocytidine in a low-temperature, highly irradiated environment, if production rates are slow.


Assuntos
Citidina/química , Planeta Terra , Processos Fotoquímicos/efeitos da radiação , Ribonucleotídeos/química , Raios Ultravioleta , Atmosfera/química , Citidina/efeitos da radiação , Desaminação/efeitos da radiação , Ribonucleotídeos/efeitos da radiação
12.
Angew Chem Int Ed Engl ; 59(42): 18350-18367, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-31825146

RESUMO

Imine synthesis has enjoyed a long history as the dynamic covalent reaction of choice for the construction of purely covalent molecular architectures. In organic solvents, the formation of imine bonds is reversible but leads to thermodynamically stable products. In the presence of water, however, imine bonds are labile, a fact which limits their utility as mediators of self-assembly in aqueous and biological media. In this Review, we discuss water-compatible dynamic covalent bonds based on N-substituted imine derivatives, namely hydrazones and oximes, for the self-assembly of metal-free organic architectures with well-defined structures. The reasons why hydrazones and oximes are more robust in water than their parent imines are explained. Recent progress in the self-assembly, characterization, and design principles of a variety of complex molecules including macrocycles, cages, catenanes, and knots in aqueous media is highlighted. Emerging applications for these molecules, including guest recognition and separations, are also discussed.

13.
Chem Commun (Camb) ; 54(9): 1121-1124, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29334083

RESUMO

UV-driven photoredox processing of cyanocuprates can generate simple sugars necessary for prebiotic synthesis. We investigate the wavelength dependence of this process from 215 to 295 nm and generally observe faster rates at shorter wavelengths. The most efficient wavelengths are accessible to a range of potential prebiotic atmospheres, supporting the potential role of cyanocuprate photochemistry in prebiotic synthesis on the early Earth.

14.
Sci Rep ; 8(1): 265, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321594

RESUMO

Water creates special problems for prebiotic chemistry, as it is thermodynamically favorable for amide and phosphodiester bonds to hydrolyze. The availability of alternative solvents with more favorable properties for the formation of prebiotic molecules on the early Earth may have helped bypass this so-called "water paradox". Formamide (FA) is one such solvent, and can serve as a nucleobase precursor, but it is difficult to envision how FA could have been generated in large quantities or accumulated in terrestrial surface environments. We report here the conversion of aqueous acetonitrile (ACN) via hydrogen cyanide (HCN) as an intermediate into FA by γ-irradiation under conditions mimicking exposure to radioactive minerals. We estimate that a radioactive placer deposit could produce 0.1‒0.8 mol FA km-2 year-1. A uraninite fission zone comparable to the Oklo reactors in Gabon can produce 0.1‒1 mol m-2 year-1, orders of magnitude greater than other scenarios of FA production or delivery for which reaching sizeable concentrations of FA are problematic. Radioactive mineral deposits may be favorable settings for prebiotic compound formation through emergent geologic processes and FA-mediated organic chemistry.

15.
Chem Commun (Camb) ; 54(5): 511-514, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29264602

RESUMO

We report the syntheses of ribonucleoside 5'-monophosphates activated with imidazole, using a mechanism which relies on the in situ generation of cyanogen chloride from the reaction of cyanide anion with hypochlorous acid. Cyanogen chloride reacts rapidly with imidazole to form diimidazole imine as the major product, a species which affords the activation of ribonucleoside 5'-monophosphates to their 5'-phosphorimidazolides.

16.
J Am Chem Soc ; 140(2): 783-792, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29251930

RESUMO

We report the synthesis of guanosine 5'-(4-methylimidazolyl)phosphonate (ICG), the third member of a series of nonhydrolyzable nucleoside 5'-phosphoro-2-methylimidazolide (2-MeImpN) analogues designed for mechanistic studies of nonenzymatic RNA primer extension. The addition of a 2-MeImpN monomer to a primer is catalyzed by the presence of a downstream activated monomer, yet the three nonhydrolyzable analogues do not show catalytic effects under standard mildly basic primer extension conditions. Surprisingly, ICG, which has a pKa similar to that of 2-MeImpG, is a modest catalyst of nonenzymatic primer extension at acidic pH. Here we show that ICG reacts with 2-MeImpC to form a stable 5'-5'-imidazole-bridged guanosine-cytosine dinucleotide, with both a labile nitrogen-phosphorus and a stable carbon-phosphorus linkage flanking the central imidazole bridge. Cognate RNA primer-template complexes react with this GC-dinucleotide by attack of the primer 3'-hydroxyl on the activated N-P side of the 5'-5'-imidazole bridge. These observations support the hypothesis that 5'-5'-imidazole-bridged dinucleotides can bind to cognate RNA primer-template duplexes and adopt appropriate conformations for subsequent phosphodiester bond formation, consistent with our recent mechanistic proposal that the formation of activated 5'-5'-imidazolium-bridged dinucleotides is responsible for 2-MeImpN-driven primer extension.


Assuntos
Monofosfato de Citidina/análogos & derivados , Imidazóis/química , Nucleotídeos/química , RNA/química , Catálise , Monofosfato de Citidina/química , Hidrólise
17.
Nat Chem ; 9(12): 1286, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168488

RESUMO

This corrects the article DOI: 10.1038/nchem.2551.

18.
Proc Natl Acad Sci U S A ; 114(29): 7659-7664, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673998

RESUMO

The nonenzymatic copying of RNA templates with imidazole-activated nucleotides is a well-studied model for the emergence of RNA self-replication during the origin of life. We have recently discovered that this reaction can proceed through the formation of an imidazolium-bridged dinucleotide intermediate that reacts rapidly with the primer. To gain insight into the relationship between the structure of this intermediate and its reactivity, we cocrystallized an RNA primer-template complex with a close analog of the intermediate, the triphosphate-bridged guanosine dinucleotide GpppG, and solved a high-resolution X-ray structure of the complex. The structure shows that GpppG binds the RNA template through two Watson-Crick base pairs, with the primer 3'-hydroxyl oriented to attack the 5'-phosphate of the adjacent G residue. Thus, the GpppG structure suggests that the bound imidazolium-bridged dinucleotide intermediate would be preorganized to react with the primer by in-line SN2 substitution. The structures of bound GppG and GppppG suggest that the length and flexibility of the 5'-5' linkage are important for optimal preorganization of the complex, whereas the position of the 5'-phosphate of bound pGpG explains the slow rate of oligonucleotide ligation reactions. Our studies provide a structural interpretation for the observed reactivity of the imidazolium-bridged dinucleotide intermediate in nonenzymatic RNA primer extension.


Assuntos
Fosfatos de Dinucleosídeos/química , Oligonucleotídeos/genética , RNA/química , Cristalografia por Raios X , Guanosina/química , Imidazóis/química , Conformação de Ácido Nucleico , Nucleotídeos/química , Origem da Vida , RNA/metabolismo , Moldes Genéticos
20.
J Am Chem Soc ; 139(26): 8780-8783, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28640999

RESUMO

We have recently shown that 2-aminoimidazole is a superior nucleotide activating group for nonenzymatic RNA copying. Here we describe a prebiotic synthesis of 2-aminoimidazole that shares a common mechanistic pathway with that of 2-aminooxazole, a previously described key intermediate in prebiotic nucleotide synthesis. In the presence of glycolaldehyde, cyanamide, phosphate and ammonium ion, both 2-aminoimidazole and 2-aminooxazole are produced, with higher concentrations of ammonium ion and acidic pH favoring the former. Given a 1:1 mixture of 2-aminoimidazole and 2-aminooxazole, glyceraldehyde preferentially reacts and cyclizes with the latter, forming a mixture of pentose aminooxazolines, and leaving free 2-aminoimidazole available for nucleotide activation. The common synthetic origin of 2-aminoimidazole and 2-aminooxazole and their distinct reactivities are suggestive of a reaction network that could lead to both the synthesis of RNA monomers and to their subsequent chemical activation.


Assuntos
Nucleotídeos , Oxazóis/química , Prebióticos , Aminoimidazol Carboxamida/química , Estrutura Molecular , Nucleotídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...