Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(11): 118301, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406860

RESUMO

Dissolved ions can alter the local permittivity of water; nevertheless most theories and simulations ignore this fact. We present a novel algorithm for treating spatial and temporal variations in the permittivity and use it to measure the equivalent conductivity of a salt-free polyelectrolyte solution. Our new approach quantitatively reproduces experimental results unlike simulations with a constant permittivity that even qualitatively fail to describe the data. We can relate this success to a change in the ion distribution close to the polymer due to the buildup of a permittivity gradient.

2.
J Chem Phys ; 143(24): 243140, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723625

RESUMO

There is a large body of literature investigating the static and dynamic properties of polyelectrolytes due both to their widespread application in industrial processes and their ubiquitous presence in biology. Because of their highly charged nature, polyelectrolytes tend to alter the local dielectric permittivity of the solution within a few nanometers of their backbone. This effect has, however, been almost entirely ignored in both simulations and theoretical work. In this article, we apply our recently developed electrostatic solver based on Maxwell's equations to examine the effects of the permittivity reduction in the vicinity of the polyelectrolyte. We first verify our new approach by calculating and comparing ion distributions around a linear fixed polyelectrolyte and find both quantitative and qualitative changes in the ion distribution. Further simulations with an applied electric field show that the reduction in the local dielectric constant increases the mobility of the chains by approximately ten percent. More importantly, variations in the local dielectric constant lead to qualitatively different behavior of the conductivity.


Assuntos
Eletrólitos/química , Polímeros/química , Eletricidade Estática , Condutividade Elétrica , Hidrodinâmica , Soluções
3.
J Chem Phys ; 141(6): 064902, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25134594

RESUMO

The ion distribution around charged colloids in solution has been investigated intensely during the last decade. However, few theoretical approaches have included the influence of variation in the dielectric permittivity within the system, let alone in the surrounding solvent. In this article, we introduce two relatively new methods that can solve the Poisson equation for systems with varying permittivity. The harmonic interpolation method approximately solves the Green's function in terms of a spherical harmonics series, and thus provides analytical ion-ion potentials for the Hamiltonian of charged systems. The Maxwell equations molecular dynamics algorithm features a local approach to electrostatics, allowing for arbitrary local changes of the dielectric constant. We show that the results of both methods are in very good agreement. We also found that the renormalized charge of the colloid, and with it the effective far field interaction, significantly changes if the dielectric properties within the vicinity of the colloid are changed.


Assuntos
Coloides/química , Eletricidade Estática , Água/química , Algoritmos , Elétrons , Simulação de Dinâmica Molecular , Soluções
4.
Artigo em Inglês | MEDLINE | ID: mdl-24483585

RESUMO

Based on a parallel scalable library for Coulomb interactions in particle systems, a comparison between the fast multipole method (FMM), multigrid-based methods, fast Fourier transform (FFT)-based methods, and a Maxwell solver is provided for the case of three-dimensional periodic boundary conditions. These methods are directly compared with respect to complexity, scalability, performance, and accuracy. To ensure comparable conditions for all methods and to cover typical applications, we tested all methods on the same set of computers using identical benchmark systems. Our findings suggest that, depending on system size and desired accuracy, the FMM- and FFT-based methods are most efficient in performance and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...