Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Headache Pain ; 23(1): 44, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382735

RESUMO

BACKGROUND: Anomalous phantom visual perceptions coupled to an aversion and discomfort to some visual patterns (especially grating in mid-range spatial frequency) have been associated with the hyperresponsiveness in migraine patients. Previous literature has found fluctuations of alpha oscillation (8-14 Hz) over the visual cortex to be associated with the gating of the visual stream. In the current study, we examined whether alpha activity was differentially modulated in migraineurs in anticipation of an upcoming stimulus as well as post-stimulus periods. METHODS: We used EEG to examine the brain activity in a group of 28 migraineurs (17 with aura /11 without) and 29 non-migraineurs and compared their alpha power in the pre/post-stimulus period relative to the onset of stripped gratings. RESULTS: Overall, we found that migraineurs had significantly less alpha power prior to the onset of the stimulus relative to controls. Moreover, migraineurs had significantly greater post-stimulus alpha suppression (i.e event-related desynchronization) induced by the grating in 3 cycles per degree at the 2nd half of the experiment. CONCLUSIONS: These findings, taken together, provide strong support for the presence of the hyperresponsiveness of the visual cortex of migraine sufferers. We speculate that it could be the consequence of impaired perceptual learning driven by the dysfunction of GABAergic inhibitory mechanism.


Assuntos
Transtornos de Enxaqueca , Córtex Visual , Humanos , Transtornos de Enxaqueca/complicações
2.
Elife ; 102021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34121657

RESUMO

Conflict detection in sensory input is central to adaptive human behavior. Perhaps unsurprisingly, past research has shown that conflict may even be detected in the absence of conflict awareness, suggesting that conflict detection is an automatic process that does not require attention. To test the possibility of conflict processing in the absence of attention, we manipulated task relevance and response overlap of potentially conflicting stimulus features across six behavioral tasks. Multivariate analyses on human electroencephalographic data revealed neural signatures of conflict only when at least one feature of a conflicting stimulus was attended, regardless of whether that feature was part of the conflict, or overlaps with the response. In contrast, neural signatures of basic sensory processes were present even when a stimulus was completely unattended. These data reveal an attentional bottleneck at the level of objects, suggesting that object-based attention is a prerequisite for cognitive control operations involved in conflict detection.


Focusing your attention on one thing can leave you surprisingly unaware of what goes on around you. A classic experiment known as 'the invisible gorilla' highlights this phenomenon. Volunteers were asked to watch a clip featuring basketball players, and count how often those wearing white shirts passed the ball: around half of participants failed to spot that someone wearing a gorilla costume wandered into the game and spent nine seconds on screen. Yet, things that you are not focusing on can sometimes grab your attention anyway. Take for example, the 'cocktail party effect', the ability to hear your name among the murmur of a crowded room. So why can we react to our own names, but fail to spot the gorilla? To help answer this question, Nuiten et al. examined how paying attention affects the way the brain processes input. Healthy volunteers were asked to perform various tasks while the words 'left' or 'right' played through speakers. The content of the word was sometimes consistent with its location ('left' being played on the left speaker), and sometimes opposite ('left' being played on the right speaker). Processing either the content or the location of the word is relatively simple for the brain; however detecting a discrepancy between these two properties is challenging, requiring the information to be processed in a brain region that monitors conflict in sensory input. To manipulate whether the volunteers needed to pay attention to the words, Nuiten et al. made their content or location either relevant or irrelevant for a task. By analyzing brain activity and task performance, they were able to study the effects of attention on how the word properties were processed. The results showed that the volunteers' brains were capable of dealing with basic information, such as location or content, even when their attention was directed elsewhere. But discrepancies between content and location could only be detected when the volunteers were focusing on the words, or when their content or location was directly relevant to the task. The findings by Nuiten et al. suggest that while performing a difficult task, our brains continue to react to basic input but often fail to process more complex information. This, in turn, has implications for a range of human activities such as driving. New technology could potentially help to counteract this phenomenon, aiming to direct attention towards complex information that might otherwise be missed.


Assuntos
Cognição/fisiologia , Conflito Psicológico , Percepção/fisiologia , Estimulação Acústica , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Testes Psicológicos , Adulto Jovem
3.
Neuroimage ; 226: 117562, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189931

RESUMO

An extensive body of work has shown that attentional capture is contingent on the goals of the observer: Capture is strongly reduced or even eliminated when an irrelevant singleton stimulus does not match the target-defining properties (Folk et al., 1992). There has been a long-standing debate on whether attentional capture can be explained by goal-driven and/or stimulus-driven accounts. Here, we shed further light on this matter by using EEG activity (raw EEG and alpha power) to provide a time-resolved index of attentional orienting towards salient stimuli that either matched or did not match target-defining properties. A search display containing the target stimulus was preceded by a spatially uninformative singleton cue that either matched the color of the upcoming target (contingent cues), or that appeared in an irrelevant color (non-contingent cues). Multivariate analysis of raw EEG and alpha power revealed preferential tuning to the location of both contingent and non-contingent cues, with a stronger bias towards contingent than non-contingent cues. The time course of these effects, however, depended on the neural signal. Raw EEG data revealed attentional orienting towards the contingent cue early on in the trial (>156 ms), while alpha power revealed sustained spatial selection in the cued locations at a later moment in the trial (>250 ms). Moreover, while raw EEG showed stronger capture by contingent cues during this early time window, an advantage for contingent cues arose during a later time window in alpha band activity. Thus, our findings suggest that raw EEG activity and alpha-band power tap into distinct neural processes that index separate aspects of covert spatial attention.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Orientação Espacial/fisiologia , Adulto , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Análise Multivariada , Tempo de Reação/fisiologia , Adulto Jovem
4.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744502

RESUMO

Adopting particular decision biases allows organisms to tailor their choices to environmental demands. For example, a liberal response strategy pays off when target detection is crucial, whereas a conservative strategy is optimal for avoiding false alarms. Using conventional time-frequency analysis of human electroencephalographic (EEG) activity, we previously showed that bias setting entails adjustment of evidence accumulation in sensory regions (Kloosterman et al., 2019), but the presumed prefrontal signature of a conservative-to-liberal bias shift has remained elusive. Here, we show that a liberal bias shift is reflected in a more unconstrained neural regime (boosted entropy) in frontal regions that is suited to the detection of unpredictable events. Overall EEG variation, spectral power and event-related potentials could not explain this relationship, highlighting that moment-to-moment neural variability uniquely tracks bias shifts. Neural variability modulation through prefrontal cortex appears instrumental for permitting an organism to adapt its biases to environmental demands.


Assuntos
Percepção Auditiva , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Estimulação Acústica , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
5.
Sci Rep ; 9(1): 13499, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534150

RESUMO

Selective attention plays a prominent role in prioritizing information in working memory (WM), improving performance for attended representations. However, it remains unclear whether unattended WM representations suffer from information loss. Here we tested the hypothesis that within WM, selectively attending to an item and stopping storing other items are independent mechanisms. We recorded EEG while participants performed a WM recall task in which the item most likely to be tested was cued retrospectively during retention. By manipulating retro-cue reliability (i.e., the ratio of valid to invalid cue trials), we varied the incentive to retain non-cued items. Storage and selective attention in WM were measured during the retention interval by contralateral delay activity (CDA) and contralateral alpha power suppression, respectively. Soon after highly reliable cues, the cued item was attended, and non-cued items suffered information loss. However, for less reliable cues, initially the cued item was attended, but unattended items were kept in WM. Later during the delay, previously unattended items suffered information loss despite now attention being reallocated to their locations, presumably to strengthen their weakening traces. These results show that storage and attention in WM are distinct processes that can behave differently depending on the relative importance of representations.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Memória de Curto Prazo/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino
6.
Elife ; 82019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31453807

RESUMO

The human brain recurrently prioritizes task-relevant over task-irrelevant visual information. A central question is whether multiple objects can be prioritized simultaneously. To answer this, we let observers search for two colored targets among distractors. Crucially, we independently varied the number of target colors that observers anticipated, and the number of target colors actually used to distinguish the targets in the display. This enabled us to dissociate the preparation of selection mechanisms from the actual engagement of such mechanisms. Multivariate classification of electroencephalographic activity allowed us to track selection of each target separately across time. The results revealed only small neural and behavioral costs associated with preparing for selecting two objects, but substantial costs when engaging in selection. Further analyses suggest this cost is the consequence of neural competition resulting in limited parallel processing, rather than a serial bottleneck. The findings bridge diverging theoretical perspectives on capacity limitations of feature-based attention.


Assuntos
Atenção , Encéfalo/fisiologia , Percepção Visual , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
7.
Elife ; 82019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724733

RESUMO

Decision bias is traditionally conceptualized as an internal reference against which sensory evidence is compared. Instead, we show that individuals implement decision bias by shifting the rate of sensory evidence accumulation toward a decision bound. Participants performed a target detection task while we recorded EEG. We experimentally manipulated participants' decision criterion for reporting targets using different stimulus-response reward contingencies, inducing either a liberal or a conservative bias. Drift diffusion modeling revealed that a liberal strategy biased sensory evidence accumulation toward target-present choices. Moreover, a liberal bias resulted in stronger midfrontal pre-stimulus 2-6 Hz (theta) power and suppression of pre-stimulus 8-12 Hz (alpha) power in posterior cortex. Alpha suppression in turn was linked to the output activity in visual cortex, as expressed through 59-100 Hz (gamma) power. These findings show that observers can intentionally control cortical excitability to strategically bias evidence accumulation toward the decision bound that maximizes reward.


Assuntos
Tomada de Decisões , Sensação , Ritmo alfa/fisiologia , Viés , Eletroencefalografia , Feminino , Humanos , Masculino , Atividade Motora/fisiologia , Estimulação Luminosa , Análise e Desempenho de Tarefas , Ritmo Teta/fisiologia , Fatores de Tempo , Córtex Visual/fisiologia , Adulto Jovem
8.
Elife ; 72018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30394873

RESUMO

Adaptive behavior requires the separation of current from future goals in working memory. We used fMRI of object-selective cortex to determine the representational (dis)similarities of memory representations serving current and prospective perceptual tasks. Participants remembered an object drawn from three possible categories as the target for one of two consecutive visual search tasks. A cue indicated whether the target object should be looked for first (currently relevant), second (prospectively relevant), or if it could be forgotten (irrelevant). Prior to the first search, representations of current, prospective and irrelevant objects were similar, with strongest decoding for current representations compared to prospective (Experiment 1) and irrelevant (Experiment 2). Remarkably, during the first search, prospective representations could also be decoded, but revealed anti-correlated voxel patterns compared to currently relevant representations of the same category. We propose that the brain separates current from prospective memories within the same neuronal ensembles through opposite representational patterns.


Assuntos
Córtex Cerebral/fisiologia , Objetivos , Adulto , Comportamento , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Fatores de Tempo , Percepção Visual/fisiologia
9.
Atten Percept Psychophys ; 80(8): 1904-1917, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30088257

RESUMO

Having to look for multiple targets typically results in switch costs. However, using a gaze-contingent eyetracking paradigm with multiple color-defined targets, we have recently shown that the emergence of switch costs depends on whether observers can choose a target or a target is being imposed upon them. Here, using a similar paradigm, we tested whether these findings generalize to the situation in which targets are specified across different feature dimensions. We instructed participants to simultaneously search for, and then fixate, either of two possible targets presented among distractors. The targets were defined as either two colors, two shapes, or one color and one shape. In one condition, only one of the two targets was available in each display, so that the choice was imposed. In the other condition, both targets would be present in each display, which gave observers free choice over what to search for. Consistent with our earlier findings, switch costs emerged when targets were imposed, whereas no switch costs emerged when target selection was free, irrespective of the dimension in which the targets were defined. The results are consistent with the operation of different modes of control in multiple-target search, with switch costs emerging whenever reactive control is required and being reduced or absent when displays allow for proactive control.


Assuntos
Atenção/fisiologia , Comportamento de Escolha/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
10.
Sci Rep ; 8(1): 11236, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30026499

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
Sci Rep ; 7(1): 1886, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507285

RESUMO

The primary electrophysiological marker of feature-based selection is the N2pc, a lateralized posterior negativity emerging around 180-200 ms. As it relies on hemispheric differences, its ability to discriminate the locus of focal attention is severely limited. Here we demonstrate that multivariate analyses of raw EEG data provide a much more fine-grained spatial profile of feature-based target selection. When training a pattern classifier to determine target position from EEG, we were able to decode target positions on the vertical midline, which cannot be achieved using standard N2pc methodology. Next, we used a forward encoding model to construct a channel tuning function that describes the continuous relationship between target position and multivariate EEG in an eight-position display. This model can spatially discriminate individual target positions in these displays and is fully invertible, enabling us to construct hypothetical topographic activation maps for target positions that were never used. When tested against the real pattern of neural activity obtained from a different group of subjects, the constructed maps from the forward model turned out statistically indistinguishable, thus providing independent validation of our model. Our findings demonstrate the power of multivariate EEG analysis to track feature-based target selection with high spatial and temporal precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...