Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 15(4): 298-304, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636455

RESUMO

We have asked Ukrainian scientists how they have been able to persist in pursuing their research since the beginning of the full-scale invasion of Ukraine by the Russian Federation in February of 2022. We thank the scientists who were willing to share their thoughts and experiences; the views expressed are those of the contributors alone.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675497

RESUMO

The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds.

3.
Virus Res ; 329: 199088, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907559

RESUMO

In this study, the genome of the lytic broad-host-range phage Key infecting Erwinia amylovora, Erwinia horticola, and Pantoea agglomerans strains was characterized. Key phage has a 115,651 bp long double-stranded DNA genome with the G + C ratio of 39.03%, encoding 182 proteins and 27 tRNA genes. The majority (69%) of predicted coding sequences (CDSs) encode proteins with unknown functions. The protein products of 57 annotated genes were found to have probable functions in nucleotide metabolism, DNA replication, recombination, repair, and packaging, virion morphogenesis, phage-host interaction and lysis. Furthermore, the product of gene 141 shared amino acid sequence similarity and conserved domain architecture with the exopolysaccharide (EPS) degrading proteins of Erwinia and Pantoea infecting phages as well as bacterial EPS biosynthesis proteins. Due to the genome synteny and similarity to the proteins of T5-related phages, phage Key, together with its closest relative, Pantoea phage AAS21, was suggested to represent a novel genus within the Demerecviridae family, for which we tentatively propose the name "Keyvirus".


Assuntos
Bacteriófagos , Erwinia amylovora , Bacteriófagos/genética , Erwinia amylovora/genética , Especificidade de Hospedeiro , Vírion/genética , Genoma Viral
4.
J Basic Microbiol ; 59(7): 754-764, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31099101

RESUMO

To date, a small number of temperate phages are known to infect members of the genus Erwinia. In this study, the genomes of temperate phages vB_EhrS_49 and vB_EhrS_59 infecting Erwinia horticola, the causative agent of beech black bacteriosis in Ukraine, were sequenced and annotated. Their genomes reveal no significant similarity to that of any previously reported viruses of Enterobacteriaceae. At the same time, phages 49 and 59 share extensive nucleotide sequence identity across the regions encoding head assembly, DNA packaging, and lysis. Despite significant homology between structural modules, the organization of distal tail morphogenesis genes is different. Furthermore, a number of putative morons and DNA methylases have been found in both phage genomes. Due to the revealed synteny as well as the structure of lysogeny module, phages 49 and 59 are suggested to be novel members of the lambdoid phage group. Conservative structural genes together with varying homology across the nonstructural region of the genomes make phages 49 and 59 highly promising objects for studying the genetic recombination and evolution of microbial viruses. The obtained data may as well be helpful for better understanding of relationships among Erwinia species.


Assuntos
Bacteriófagos/genética , Erwinia/virologia , Genoma Bacteriano/genética , Genoma Viral/genética , Siphoviridae/genética , DNA Viral/genética , Genes Virais , Lisogenia , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Siphoviridae/classificação , Especificidade da Espécie , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...