Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(31): 18574-18581, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661155

RESUMO

Many vertebrates have distinctive blue-green bones and other tissues due to unusually high biliverdin concentrations-a phenomenon called chlorosis. Despite its prevalence, the biochemical basis, biology, and evolution of chlorosis are poorly understood. In this study, we show that the occurrence of high biliverdin in anurans (frogs and toads) has evolved multiple times during their evolutionary history, and relies on the same mechanism-the presence of a class of serpin family proteins that bind biliverdin. Using a diverse combination of techniques, we purified these serpins from several species of nonmodel treefrogs and developed a pipeline that allowed us to assemble their complete amino acid and nucleotide sequences. The described proteins, hereafter named biliverdin-binding serpins (BBS), have absorption spectra that mimic those of phytochromes and bacteriophytochromes. Our models showed that physiological concentration of BBSs fine-tune the color of the animals, providing the physiological basis for crypsis in green foliage even under near-infrared light. Additionally, we found that these BBSs are most similar to human glycoprotein alpha-1-antitrypsin, but with a remarkable functional diversification. Our results present molecular and functional evidence of recurrent evolution of chlorosis, describe a biliverdin-binding protein in vertebrates, and introduce a function for a member of the serpin superfamily, the largest and most ubiquitous group of protease inhibitors.


Assuntos
Anuros/fisiologia , Biliverdina/metabolismo , Serpinas/metabolismo , Pigmentação da Pele/fisiologia , Animais , Anuros/classificação , Anuros/genética , Biliverdina/química , Mimetismo Biológico/fisiologia , Serpinas/química , Serpinas/genética , Pigmentação da Pele/genética
2.
Proc Natl Acad Sci U S A ; 110(29): 12120-5, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818596

RESUMO

Light signaling pathways and the circadian clock interact to help organisms synchronize physiological and developmental processes with periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Here we describe a family of night light-inducible and clock-regulated genes (LNK) that play a key role linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. A genomewide transcriptome analysis revealed that most light-induced genes respond more strongly to light during the subjective day, which is consistent with the diurnal nature of most physiological processes in plants. However, a handful of genes, including the homologous genes LNK1 and LNK2, are more strongly induced by light in the middle of the night, when the clock is most responsive to this signal. Further analysis revealed that the morning phased LNK1 and LNK2 genes control circadian rhythms, photomorphogenic responses, and photoperiodic dependent flowering, most likely by regulating a subset of clock and flowering time genes in the afternoon. LNK1 and LNK2 themselves are directly repressed by members of the TIMING OF CAB1 EXPRESSION/PSEUDO RESPONSE REGULATOR family of core-clock genes in the afternoon and early night. Thus, LNK1 and LNK2 integrate early light signals with temporal information provided by core oscillator components to control the expression of afternoon genes, allowing plants to keep track of seasonal changes in day length.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinal Luminoso/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Relógios Circadianos/genética , Primers do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transdução de Sinal Luminoso/genética , Análise em Microsséries , Fotoperíodo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Fatores de Transcrição/metabolismo
3.
Plant Cell ; 18(11): 2919-28, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17114357

RESUMO

In plants, light signals caused by the presence of neighbors accelerate stem growth and flowering and induce a more erect position of the leaves, a developmental strategy known as shade-avoidance syndrome. In addition, mutations in the photoreceptors that mediate shade-avoidance responses enhance disease susceptibility in Arabidopsis thaliana. Here, we describe the Arabidopsis constitutive shade-avoidance1 (csa1) mutant, which shows a shade-avoidance phenotype in the absence of shade and enhanced growth of a bacterial pathogen. The csa1 mutant has a T-DNA inserted within the second exon of a Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) gene, which leads to the production of a truncated mRNA. Arabidopsis plants transformed with the truncated TIR-NBS-LRR gene recapitulate the mutant phenotype, indicating that csa1 is a dominant-negative mutation that interferes with phytochrome signaling. TIR-NBS-LRR proteins have been implicated in defense responses in plants. RPS4, the closest homolog of CSA1, confers resistance to Pseudomonas syringae and complements the csa1 mutant phenotype, indicating that responses to pathogens and neighbors share core-signaling components in Arabidopsis. In Drosophila melanogaster and Caenorhabditis elegans, TIR domain proteins are implicated in both development and immunity. Thus, the dual role of the TIR domain is conserved across kingdoms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Luz , Morfogênese , Mutação/genética , Proteínas/metabolismo , Animais , Arabidopsis/microbiologia , Proteínas de Arabidopsis/isolamento & purificação , DNA Bacteriano/metabolismo , Expressão Gênica/efeitos da radiação , Hipocótilo/microbiologia , Hipocótilo/efeitos da radiação , Imunidade/efeitos da radiação , Proteínas de Repetições Ricas em Leucina , Mutagênese Insercional , Fenótipo , Fitocromo B/metabolismo , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína/efeitos da radiação , Proteínas/genética , Pseudomonas syringae/fisiologia , Plântula/microbiologia , Plântula/efeitos da radiação , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...