Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Anat Rec (Hoboken) ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924700

RESUMO

The existence of a previously unrecognized subarachnoid lymphatic-like membrane (SLYM) was reported in a recent study. SLYM is described as an intermediate leptomeningeal layer between the arachnoid and pia mater in mouse and human brains, which divides the subarachnoid space (SAS) into two functional compartments. Being a macroscopic structure, having missed detection in previous studies is surprising. We systematically reviewed the published reports in animals and humans to explore whether prior descriptions of this meningeal layer were reported in some way. A comprehensive search was conducted in PubMed/Medline, EMBASE, Google Scholar, Science Direct, and Web of Science databases using combinations of MeSH terms and keywords with Boolean operators from inception until 31 December 2023. We found at least eight studies that provided structural evidence of an intermediate leptomeningeal layer in the brain or spinal cord. However, unequivocal descriptions for this layer all along the central nervous system were scarce. Obscure names like the epipial, intermediate meningeal, outer pial layers, or intermediate lamella were used to describe it. Its microscopic/ultrastructural details closely resemble the recently reported SLYM. We further examined the counterarguments in current literature that are skeptical of the existence of this layer. The potential physiological and clinical implications of this new meningeal layer are significant, underscoring the urgent need for further exploration of its structural and functional details.

2.
JMIR Bioinform Biotech ; 4: e42700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36688013

RESUMO

Background: Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. Objective: The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. Methods: We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. Results: Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). Conclusions: In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.

3.
Neural Regen Res ; 18(5): 1139-1146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36255004

RESUMO

Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer's disease and other neurological disorders. However, whether and how central insulin resistance plays a role in the eye remains unclear. Here, we performed intracerebroventricular injection of S961, a potent and specific blocker of insulin receptor in adult Wistar rats to test if central insulin resistance leads to pathological changes in ocular structures. 80 mg of S961 was stereotaxically injected into the lateral ventricle of the experimental group twice at 7 days apart, whereas buffer solution was injected to the sham control group. Blood samples, intraocular pressure, trabecular meshwork morphology, ciliary body markers, retinal and optic nerve integrity, and whole genome expression patterns were then evaluated. While neither blood glucose nor serum insulin level was significantly altered in the experimental or control group, we found that injection of S961 but not buffer solution significantly increased intraocular pressure at 14 and 24 days after first injection, along with reduced porosity and aquaporin 4 expression in the trabecular meshwork, and increased tumor necrosis factor α and aquaporin 4 expression in the ciliary body. In the retina, cell density and insulin receptor expression decreased in the retinal ganglion cell layer upon S961 injection. Fundus photography revealed peripapillary atrophy with vascular dysregulation in the experimental group. These retinal changes were accompanied by upregulation of pro-inflammatory and pro-apoptotic genes, downregulation of anti-inflammatory, anti-apoptotic, and neurotrophic genes, as well as dysregulation of genes involved in insulin signaling. Optic nerve histology indicated microglial activation and changes in the expression of glial fibrillary acidic protein, tumor necrosis factor α, and aquaporin 4. Molecular pathway architecture of the retina revealed the three most significant pathways involved being inflammation/cell stress, insulin signaling, and extracellular matrix regulation relevant to neurodegeneration. There was also a multimodal crosstalk between insulin signaling derangement and inflammation-related genes. Taken together, our results indicate that blocking insulin receptor signaling in the central nervous system can lead to trabecular meshwork and ciliary body dysfunction, intraocular pressure elevation, as well as inflammation, glial activation, and apoptosis in the retina and optic nerve. Given that central insulin resistance may lead to neurodegenerative phenotype in the visual system, targeting insulin signaling may hold promise for vision disorders involving the retina and optic nerve.

4.
Brain Behav Immun ; 107: 87-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202167

RESUMO

Emerging evidence suggests a detrimental impact of COVID-19 illness on the continued hippocampal neurogenesis in adults. In contrast, the existing literature supports an enhancing effect of COVID-19 vaccination on adult hippocampal neurogenesis. Vaccines against respiratory infections, including influenza, have been shown to enhance hippocampal neurogenesis in adult-age animals. We propose that a similar benefit may happen in COVID-19 vaccinated adults. The vaccine-induced enhancement of the hippocampal neurogenesis in adults thus may protect against age-related cognitive decline and mental disorders. It alsohints at an added mental health benefit of the COVID-19 vaccination programs in adults.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle
5.
Biology (Basel) ; 11(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336827

RESUMO

Glaucoma is a group of ophthalmologic conditions characterized by progressive retinal ganglion cell death, optic nerve degeneration, and irreversible vision loss. While intraocular pressure is the only clinically modifiable risk factor, glaucoma may continue to progress at controlled intraocular pressure, indicating other major factors in contributing to the disease mechanisms. Recent studies demonstrated the feasibility of advanced diffusion magnetic resonance imaging (dMRI) in visualizing the microstructural integrity of the visual system, opening new possibilities for non-invasive characterization of glaucomatous brain changes for guiding earlier and targeted intervention besides intraocular pressure lowering. In this review, we discuss dMRI methods currently used in visual system investigations, focusing on the eye, optic nerve, optic tract, subcortical visual brain nuclei, optic radiations, and visual cortex. We evaluate how conventional diffusion tensor imaging, higher-order diffusion kurtosis imaging, and other extended dMRI techniques can assess the neuronal and glial integrity of the visual system in both humans and experimental animal models of glaucoma, among other optic neuropathies or neurodegenerative diseases. We also compare the pros and cons of these methods against other imaging modalities. A growing body of dMRI research indicates that this modality holds promise in characterizing early glaucomatous changes in the visual system, determining the disease severity, and identifying potential neurotherapeutic targets, offering more options to slow glaucoma progression and to reduce the prevalence of this world's leading cause of irreversible but preventable blindness.

6.
Neural Regen Res ; 17(5): 937-947, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34558505

RESUMO

Optic nerve health is essential for proper function of the visual system. However, the pathophysiology of certain neurodegenerative disease processes affecting the optic nerve, such as glaucoma, is not fully understood. Recently, it was hypothesized that a lack of proper clearance of neurotoxins contributes to neurodegenerative diseases. The ability to clear metabolic waste is essential for tissue homeostasis in mammals, including humans. While the brain lacks the traditional lymphatic drainage system identified in other anatomical regions, there is growing evidence of a glymphatic system in the central nervous system, which structurally includes the optic nerve. Named to acknowledge the supportive role of astroglial cells, this perivascular fluid drainage system is essential to remove toxic metabolites from the central nervous system. Herein, we review existing literature describing the physiology and dysfunction of the glymphatic system specifically as it relates to the optic nerve. We summarize key imaging studies demonstrating the existence of a glymphatic system in the optic nerves of wild-type rodents, aquaporin 4-null rodents, and humans; glymphatic imaging studies in diseases where the optic nerve is impaired; and current evidence regarding pharmacological and lifestyle interventions that may help promote glymphatic function to improve optic nerve health. We conclude by highlighting future research directions that could be applied to improve imaging detection and guide therapeutic interventions for diseases affecting the optic nerve.

7.
J Med Virol ; 94(4): 1300-1314, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34811761

RESUMO

Young age, female sex, absence of comorbidities, and prior infection or vaccination are known epidemiological barriers for contracting the new infection and/or increased disease severity. Demographic trends from the recent coronavirus disease 2019 waves, which are believed to be driven by newer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, indicate that the aforementioned epidemiological barriers are being breached and a larger number of younger and healthy individuals are developing severe disease. The new SARS-CoV-2 variants have key mutations that can induce significant changes in the virus-host interactions. Recent studies report that, some of these mutations, singly or in a group, enhance key mechanisms, such as binding of the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor in the host-cells, increase the glycosylation of spike protein at the antigenic sites, and enhance the proteolytic cleavage of the spike protein, thus leading to improved host-cell entry and the replication of the virus. The putative changes in the virus-host interactions imparted by the mutations in the RBD sequence can potentially be the reason behind the breach of the observed epidemiological barriers. Susceptibility for contracting SARS-CoV-2 infection and the disease outcomes are known to be influenced by host-cell expressions of ACE2 and other proteases. The new variants can act more efficiently, and even with the lesser availability of the viral entry-receptor and the associated proteases, can have more efficient host-cell entry and greater replication resulting in high viral loads and prolonged viral shedding, widespread tissue-injury, and severe inflammation leading to increased transmissibility and lethality. Furthermore, the accumulating evidence shows that multiple new variants have reduced neutralization by both, natural and vaccine-acquired antibodies, indicating that repeated and vaccine breakthrough infections may arise as serious health concerns in the ongoing pandemic.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , COVID-19/transmissão , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Mutação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus , Replicação Viral
8.
Front Immunol ; 12: 693938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790191

RESUMO

More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Animais , Corpo Humano , Humanos , Pulmão/imunologia , Pulmão/virologia , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
9.
Invest Ophthalmol Vis Sci ; 62(10): 21, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34410298

RESUMO

Purpose: To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI). Methods: Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes. For genetic models, the DBA/2J mouse model of pigmentary glaucoma, the LTBP2 mutant feline model of congenital glaucoma, and the transgenic TBK1 mouse model of normotensive glaucoma were compared with their respective genetically matched healthy controls. DTI parameters, including fractional anisotropy, axial diffusivity, and radial diffusivity, were evaluated along the optic nerve and optic tract. Results: Significantly elevated IOP relative to controls was observed in each animal model except for the transgenic TBK1 mice. Significantly lower fractional anisotropy and higher radial diffusivity were observed along the visual pathways of the microbead- and laser-induced rodent models, the DBA/2J mice, and the LTBP2-mutant cats compared with their respective healthy controls. The DBA/2J mice also exhibited lower axial diffusivity, which was not observed in the other models examined. No apparent DTI change was observed in the transgenic TBK1 mice compared with controls. Conclusions: Chronic IOP elevation was accompanied by decreased fractional anisotropy and increased radial diffusivity along the optic nerve or optic tract, suggestive of disrupted microstructural integrity in both inducible and genetic glaucoma animal models. The effects on axial diffusivity differed between models, indicating that this DTI metric may represent different aspects of pathological changes over time and with severity.


Assuntos
Imagem de Tensor de Difusão/métodos , Glaucoma de Ângulo Aberto/diagnóstico , Substância Cinzenta/patologia , Pressão Intraocular/fisiologia , Nervo Óptico/patologia , Vias Visuais/patologia , Animais , Anisotropia , Gatos , Modelos Animais de Doenças , Glaucoma de Ângulo Aberto/fisiopatologia , Camundongos , Camundongos Endogâmicos DBA , Fibras Nervosas/patologia , Ratos , Ratos Sprague-Dawley
10.
Neurotherapeutics ; 18(2): 1339-1359, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33846961

RESUMO

Glaucoma is a neurodegenerative disease that causes progressive, irreversible vision loss. Currently, intraocular pressure (IOP) is the only modifiable risk factor for glaucoma. However, glaucomatous degeneration may continue despite adequate IOP control. Therefore, there exists a need for treatment that protects the visual system, independent of IOP. This study sought, first, to longitudinally examine the neurobehavioral effects of different magnitudes and durations of IOP elevation using multi-parametric magnetic resonance imaging (MRI), optokinetics and histology; and, second, to evaluate the effects of oral citicoline treatment as a neurotherapeutic in experimental glaucoma. Eighty-two adult Long Evans rats were divided into six groups: acute (mild or severe) IOP elevation, chronic (citicoline-treated or untreated) IOP elevation, and sham (acute or chronic) controls. We found that increasing magnitudes and durations of IOP elevation differentially altered structural and functional brain connectivity and visuomotor behavior, as indicated by decreases in fractional anisotropy in diffusion tensor MRI, magnetization transfer ratios in magnetization transfer MRI, T1-weighted MRI enhancement of anterograde manganese transport, resting-state functional connectivity, visual acuity, and neurofilament and myelin staining along the visual pathway. Furthermore, 3 weeks of oral citicoline treatment in the setting of chronic IOP elevation significantly reduced visual brain integrity loss and visual acuity decline without altering IOP. Such effects sustained after treatment was discontinued for another 3 weeks. These results not only illuminate the close interplay between eye, brain, and behavior in glaucomatous neurodegeneration, but also support a role for citicoline in protecting neural tissues and visual function in glaucoma beyond IOP control.


Assuntos
Citidina Difosfato Colina/farmacologia , Pressão Intraocular/efeitos dos fármacos , Nootrópicos/farmacologia , Nervo Óptico/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Imagem de Tensor de Difusão , Medições dos Movimentos Oculares , Feminino , Glaucoma , Imageamento por Ressonância Magnética Multiparamétrica , Vias Neurais/efeitos dos fármacos , Doenças Neurodegenerativas/fisiopatologia , Hipertensão Ocular/fisiopatologia , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/patologia , Espectroscopia de Prótons por Ressonância Magnética , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Índice de Gravidade de Doença , Fatores de Tempo , Acuidade Visual/efeitos dos fármacos , Vias Visuais/diagnóstico por imagem , Vias Visuais/patologia
11.
Int Rev Immunol ; 40(1-2): 54-71, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33111578

RESUMO

Lack of standardized therapeutic approaches is arguably the significant contributor to the high burden of mortality observed in the ongoing pandemic of the Coronavirus disease, 2019 (COVID-19). Evidence is accumulating on SARS-CoV-2 specific immune cell dysregulation and consequent tissue injury in COVID-19. Currently, no definite drugs or vaccines are available against the disease; however initial results of the ongoing clinical trials have raised some hope. In this article, taking insights from the emerging empirical evidence about host-virus interactions, we deliberate upon plausible pathogenic mechanisms and suitable therapeutic approaches for COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Síndrome da Liberação de Citocina/patologia , Imunidade Inata/imunologia , SARS-CoV-2/imunologia , Antivirais/uso terapêutico , Ativação do Complemento/imunologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
12.
J Med Virol ; 93(3): 1343-1350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33085084

RESUMO

The paucity of knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific virulence factors has greatly hampered the therapeutic management of patients with coronavirus disease 2019 (COVID-19). Recently, a cluster of studies appeared, which presented empirical evidence for SARS-CoV-2-specific virulence factors that can explain key elements of COVID-19 pathology. These studies unravel multiple structural and nonstructural specifics of SARS-CoV-2, such as a unique FURIN cleavage site, papain-like protease (SCoV2-PLpro), ORF3b and nonstructural proteins, and dynamic conformational changes in the structure of spike protein during host cell fusion, which give it an edge in infectivity and virulence over previous coronaviruses causing pandemics. Investigators provided robust evidence that SARS-CoV-2-specific virulence factors may have an impact on viral infectivity and transmissibility and disease severity as well as the development of immunity against the infection, including response to the vaccines. In this article, we are presenting a summarized account of the newly reported studies.


Assuntos
COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , SARS-CoV-2/patogenicidade , Fatores de Virulência/química , COVID-19/imunologia , Humanos , SARS-CoV-2/química , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química
13.
J Magn Reson Imaging ; 54(6): 1706-1729, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009710

RESUMO

The visual system, consisting of the eyes and the visual pathways of the brain, receives and interprets light from the environment so that we can perceive the world around us. A wide variety of disorders can affect human vision, ranging from ocular to neurologic to systemic in nature. While other noninvasive imaging techniques such as optical coherence tomography and ultrasound can image particular sections of the visual system, magnetic resonance imaging (MRI) offers high resolution without depth limitations. MRI also gives superior soft-tissue contrast throughout the entire pathway compared to computed tomography. By leveraging different imaging sequences, MRI is uniquely capable of unveiling the intricate processes of ocular anatomy, tissue physiology, and neurological function in the human visual system from the microscopic to macroscopic levels. In this review we discuss how structural, metabolic, and functional MRI can be used in the clinical assessment of normal and pathologic states in the anatomic structures of the visual system, including the eyes, optic nerves, optic chiasm, optic tracts, visual brain nuclei, optic radiations, and visual cortical areas. We detail a selection of recent clinical applications of MRI at each position along the visual pathways, including the evaluation of pathology, plasticity, and the potential for restoration, as well as its limitations and key areas of ongoing exploration. Our discussion of the current and future developments in MR ocular and neuroimaging highlights its potential impact on our ability to understand visual function in new detail and to improve our protection and treatment of anatomic structures that are integral to this fundamental sensory system. LEVEL OF EVIDENCE 3: TECHNICAL EFFICACY STAGE 3: .


Assuntos
Imageamento por Ressonância Magnética , Vias Visuais , Humanos , Neuroimagem , Nervo Óptico , Órgãos dos Sentidos , Vias Visuais/diagnóstico por imagem
14.
Zoo Biol ; 40(1): 79-85, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33034084

RESUMO

The article is presenting a bioinformatics based method predicting susceptibility for SARS-CoV-2 infection in domestic and wildlife animals. Recently, there were reports of cats and ferrets, dogs, minks, golden hamster, rhesus monkeys, tigers, and lions testing for SARS-CoV-2 RNA which indicated for the possible interspecies viral transmission. Our method successfully predicted the susceptibility of these animals for contracting SARS-CoV-2 infection. This method can be used as a screening tool for guiding viral RNA testing for domestic and wildlife animals at risk of getting COVID-19. We provide a list of the animals at risk of developing COVID-19 based on the susceptibility score.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Animais Domésticos , Animais Selvagens , COVID-19/veterinária , Predisposição Genética para Doença , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/virologia , Regulação Enzimológica da Expressão Gênica , Humanos , RNA Viral/análise , Especificidade da Espécie
15.
Med Hypotheses ; 144: 110271, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33254575

RESUMO

COVID-19 is caused by a new strain of coronavirus called SARS-coronavirus-2 (SARS-CoV-2), which is a positive sense single strand RNA virus. In humans, it binds to angiotensin converting enzyme 2 (ACE2) with the help a structural protein on its surface called the S-spike. Further, cleavage of the viral spike protein (S) by the proteases like transmembrane serine protease 2 (TMPRSS2) or Cathepsin L (CTSL) is essential to effectuate host cell membrane fusion and virus infectivity. COVID-19 poses intriguing issues with imperative relevance to clinicians. The pathogenesis of GI symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 are of particular relevance because they cannot be sufficiently explained from the existing knowledge of the viral diseases. Tissue specific variations of SARS-CoV-2 cell entry related receptors expression in healthy individuals can help in understanding the pathophysiological basis the aforementioned collection of symptoms. ACE2 mediated dysregulation of sodium dependent glucose transporter (SGLT1 or SLC5A1) in the intestinal epithelium also links it to the pathogenesis of diabetes mellitus which can be a possible reason for the associated mortality in COVID-19 patients with diabetes. High expression of ACE2 in mucosal cells of the intestine and GB make these organs potential sites for the virus entry and replication. Continued replication of the virus at these ACE2 enriched sites may be a basis for the disease recurrence reported in some, thought to be cured, patients. Based on the human tissue specific distribution of SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 and other supportive evidence from the literature, we hypothesize that SARS-CoV-2 host cell entry receptor-ACE2 based mechanism in GI tissue may be involved in COVID-19 (i) in the pathogenesis of digestive symptoms, (ii) in increased diabetic complications, (iii) in disease recurrence.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/fisiopatologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/mortalidade , Trato Gastrointestinal/virologia , Serina Endopeptidases/metabolismo , COVID-19/metabolismo , Gastroenteropatias/complicações , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Incidência , Mucosa Intestinal/virologia , Modelos Teóricos , Ligação Proteica , Proteoma , Recidiva , SARS-CoV-2 , Transcriptoma , Resultado do Tratamento
16.
Med Hypotheses ; 145: 110320, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33032170

RESUMO

Several studies have described unusually high incidence of vascular thrombosis in coronavirus disease-2019 (COVID-19) patients. Pathogenesis of the vascular thrombosis in COVID-19 is least understood for now and presents a challenge to the treating physicians. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative pathogen for COVID-19, has been shown to bind to angiotensin converting enzyme 2 (ACE2) protein in human epithelial cells which facilitates its entry in the organ and mediate tissue specific pathogenesis. For ACE2 mediated cell entry of the SARS-CoV-2, co-expression of one more protein-Transmembrane protease serine 2 (TMPRSS2) is essential. Existing studies suggested significant expression of ACE2 and TMPRSS2 in human vascular endothelium. Vascular endothelial dysfunction can potentially activate coagulation cascade eventually resulting in thrombosis. ACE2 has proven role in the maintenance of endothelial integrity inside the vessels. Existing in situ evidence for SARS-CoV-1 (the causative agent for SARS pandemic of 2002, which shared ACE2 as cell entry receptor) suggested that virus binding can downregulate ACE2, thus can induce endothelial dysfunction. Recently, in situ evidence has been presented that SARS-CoV-2 can infect cells in engineered human vascular endothelium, which can be effectively blocked by using clinical-grade recombinant human ACE2. Based on the circumstantial evidence present in the literature, we propose a SARS-CoV-2 cell entry receptor ACE2 based mechanism for vascular thrombosis in COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , Endotélio Vascular/metabolismo , SARS-CoV-2/fisiologia , Trombose/virologia , Doenças Vasculares/virologia , COVID-19/patologia , Endotélio Vascular/patologia , Humanos , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Trombose/metabolismo , Resultado do Tratamento , Doenças Vasculares/metabolismo , Internalização do Vírus
17.
IBRO Rep ; 9: 224-232, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32995658

RESUMO

PURPOSE: Immunohistological investigations have given rise to divergent perspectives about adult hippocampal neurogenesis in humans. Therefore, this study aimed to examine whether a comprehensive transcriptomic analysis of signature markers of neurogenesis, supplemented with markers of gliogenesis, vasculogenesis, cell proliferation, and apoptosis, may help discern essential aspects of adult hippocampal neurogenesis in humans. MATERIALS AND METHODS: RNA expression data for salient marker genes of neurogenesis, gliogenesis, vasculogenesis, and apoptosis in post-mortem human hippocampal tissue [from prenatal (n = 15), child (n = 5), adolescent (n = 4), and adult (n = 6) brains] were downloaded from the Allen Human Brain Atlas database (http://www.brainspan.org/rnaseq/search/index.html). Gene expression data was categorized, median values were computed, and age group-specific differential expression was subjected to statistical analysis (significance level, α = 0.01). RESULTS: With the exception of the genes encoding GFAP, BLBP, SOX2, and PSA-NCAM (unchanged), and the post-mitotic late maturation markers CALB1, CALB2, MAP2, and NEUN as well as the pan-neuronal marker PROX1 which were persistently expressed throughout, expression of all other genes associated with neurogenesis was steeply and progressively downregulated between perinatal life and adulthood. Interestingly, expression of the classical proliferation marker KI67 and a progenitor cell marker TBR2 were found to have reached baseline expression levels (zero expression score) at adolescence while the expression of immature neuronal, post-mitotic early and late maturation markers remained at a constant level after childhood. In contrast, markers of gliogenesis (other than PDGFRA and Vimentin) were significantly upregulated between prenatal life and childhood. Expression of the vasculogenesis markers VEGFA and FGF2 did not differ across any of the age groups studied, whereas the expression of apoptotic markers was progressively decreased after prenatal life. CONCLUSIONS: Our findings indicate that the progression of neurogenesis from progenitor cells is highly restricted in the human brain from childhood onwards. An alternative possibility that limited neurogenesis may be continued in adolescents and adults from a developmentally arrested pool of immature neurons needs to be examined further through experimental studies.

18.
J Neurosci Res ; 98(12): 2376-2383, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32869376

RESUMO

Manifestation of neurological symptoms in certain patients of coronavirus disease-2019 (COVID-19) has warranted for their virus-induced etiogenesis. SARS-CoV-2, the causative agent of COVID-19, belongs to the genus of betacoronaviruses which also includes SARS-CoV-1 and MERS-CoV; causative agents for severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012, respectively. Studies demonstrating the neural invasion of SARS-CoV-2 in vivo are still scarce, although such characteristics of certain other betacoronaviruses are well demonstrated in the literature. Based on the recent evidence for the presence of SARS-CoV-2 host cell entry receptors in specific components of the human nervous and vascular tissue, a neural (olfactory and/or vagal), and a hematogenous-crossing the blood-brain barrier, routes have been proposed. The neurological symptoms in COVID-19 may also arise as a consequence of the "cytokine storm" (characteristically present in severe disease) induced neuroinflammation, or co-morbidities. There is also a possibility that, there may be multiple routes of SARS-CoV-2 entry into the brain, or multiple mechanisms can be involved in the pathogenesis of the neurological symptoms. In this review article, we have discussed the possible routes of SARS-CoV-2 brain entry based on the emerging evidence for this virus, and that available for other betacoronaviruses in literature.


Assuntos
Betacoronavirus/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Infecções por Coronavirus/metabolismo , Doenças do Sistema Nervoso/metabolismo , Nervo Olfatório/metabolismo , Pneumonia Viral/metabolismo , Animais , Barreira Hematoencefálica/virologia , Encéfalo/virologia , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/transmissão , Humanos , Doenças do Sistema Nervoso/etiologia , Nervo Olfatório/virologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/transmissão , SARS-CoV-2
19.
Med Hypotheses ; 144: 109948, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32516733

RESUMO

With the number of cases crossing six million (and more than three hundred and seventy thousand deaths) worldwide, there is a dire need of a vaccine (and repurposing of drugs) for SARS-CoV-2 disease (COVID-19). It can be argued that a vaccine may be the most efficient way to contain the spread of this disease and prevent its future onset. While many attempts are being made to design and develop a vaccine for SARS-CoV-2, pertinent technological hitches do exist. That is perhaps one of the reasons that we don't have vaccine for coronaviruses (including SARS-CoV-1 and MERS). Recently developed CRISPR-mediated genome editing approach can be repurposed into a cell-modification endeavor in addition to (and rather than) correcting defective parts of genome. With this premise, B-cells can be engineered into universal donor, antigen specific, perpetually viable, long lasting, non-oncogenic, relatively benign, antibody producing cells which may serve as an effective vaccine for SARS-CoV-2 and, by the same rationale, other viruses and pathogens.


Assuntos
Linfócitos B/imunologia , Vacinas contra COVID-19/biossíntese , COVID-19/imunologia , COVID-19/prevenção & controle , Engenharia Genética/métodos , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/genética , Linfócitos B/virologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Engenharia Celular/métodos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Camundongos , Modelos Genéticos , Modelos Imunológicos , Pandemias/prevenção & controle , SARS-CoV-2/genética , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...