Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 118(20): 5589-99, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24786911

RESUMO

The orientational distribution of a set of stable nitroxide radicals in aligned liquid crystals 5CB (nematic) and 8CB (smectic A) was studied in detail by numerical simulation of EPR spectra. The order parameters up to the 10th rank were measured. The directions of the principal orientation axes of the radicals were determined. It was shown that the ordering of the probe molecules is controlled by their interaction with the matrix molecules more than the inherent geometry of the probes themselves. The rigid fused phenanthrene-based (A5) and 2-azaphenalene (A4) nitroxides as well as the rigid core elongated C11 and 5α-cholestane (CLS) nitroxides were found to be most sensitive to the orientation of the liquid crystal matrixes.

2.
Environ Sci Technol ; 47(14): 7655-62, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23763365

RESUMO

Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of the fuel's constituent molecules. Previous studies demonstrated the relationship between the organic fraction of particulate matter (PM) and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analyzed in more detail to explore the role that different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact time of flight aerosol mass spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore, the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases, shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.


Assuntos
Aerossóis/química , Gasolina , Compostos Orgânicos/química , Oxigênio/química , Material Particulado , Oxirredução
3.
Environ Sci Technol ; 45(24): 10337-43, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22039912

RESUMO

This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 µm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.


Assuntos
Poluentes Atmosféricos/química , Biocombustíveis/análise , Material Particulado/química , Poluentes Atmosféricos/análise , Conservação de Recursos Energéticos , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espécies Reativas de Oxigênio/análise , Medição de Risco , Emissões de Veículos
4.
Environ Sci Technol ; 45(13): 5498-505, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21627159

RESUMO

Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.


Assuntos
Gasolina/análise , Material Particulado/análise , Material Particulado/química , Emissões de Veículos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espécies Reativas de Oxigênio/análise , Temperatura
5.
Environ Sci Technol ; 44(17): 6601-7, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20684503

RESUMO

This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.


Assuntos
Incêndios , Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Material Particulado/química , Madeira/metabolismo , Peso Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...