Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794310

RESUMO

Inhaled ciprofloxacin (CFX) has been investigated as a treatment for lower respiratory tract infections (LRTIs) associated with cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and bronchiectasis. The challenges in CFX effectiveness for LRTI treatment include poor aqueous solubility and therapy resistance. CFX dry powder for inhalation (DPI) formulations were well-tolerated, showing a remarkable decline in overall bacterial burden compared to a placebo in bronchiectasis patients. Recent research using an inhalable powder combining Pseudomonas phage PEV20 with CFX exhibited a substantial reduction in bacterial density in mouse lungs infected with clinical P. aeruginosa strains and reduced inflammation. Currently, studies suggest that elevated biosynthesis of fatty acids could serve as a potential biomarker for detecting CFX resistance in LRTIs. Furthermore, inhaled CFX has successfully addressed various challenges associated with traditional CFX, including the incapacity to eliminate the pathogen, the recurrence of colonization, and the development of resistance. However, further exploration is needed to address three key unresolved issues: identifying the right patient group, determining the optimal treatment duration, and accurately assessing the risk of antibiotic resistance, with additional multicenter randomized controlled trials suggested to tackle these challenges. Importantly, future investigations will focus on the effectiveness of CFX DPI in bronchiectasis and COPD, aiming to differentiate prognoses between these two conditions. This review underscores the importance of CFX inhalable formulations against LRTIs in preclinical and clinical sectors, their challenges, recent advancements, and future perspectives.

2.
Int J Pharm ; 655: 124046, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554739

RESUMO

Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.


Assuntos
Anti-Infecciosos , Lipossomos , Lipossomos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes , Bactérias , Testes de Sensibilidade Microbiana
3.
Antibiotics (Basel) ; 12(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136740

RESUMO

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a global health concern. The propensity of MRSA to form biofilms is a significant contributor to its pathogenicity. Strategies to treat biofilms often involve small molecules that disperse the biofilm into planktonic cells. Linezolid and, by extension, theoxazolidinones have been developed to treat infections caused by Gram-positive bacteria such as MRSA. However, the clinical development of these antibiotics has mainly assessed the susceptibility of planktonic cells to the drug. Previous studies evaluating the anti-biofilm activity of theoxazolidinones have mainly focused on the biofilm inhibition of Enterococcus faecalis and methicillin-sensitive Staphylococcus aureus, with only a few studies investigating the activity of oxazolidinones for eradicating established biofilms for these species. Very little is known about the ability of oxazolidinones to eradicate MRSA biofilms. In this work, five oxazolidinones were assessed against MRSA biofilms using a minimum biofilm eradication concentration (MBEC) assay. All oxazolidinones had inherent antibiofilm activity. However, only ranbezolid could completely eradicate MRSA biofilms at clinically relevant concentrations. The susceptibility of the MRSA biofilms to ranbezolid was synergistically enhanced by coadministration with the nitroxide biofilm dispersal agent C-TEMPO. We presume that ranbezolid acts as a dual warhead drug, which combines the mechanism of action of the oxazolidinones with a nitric oxide donor or cytotoxic drug.

4.
Antibiotics (Basel) ; 12(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37887180

RESUMO

Urinary tract infections (UTIs) are the second most common bacterial infection with high recurrence rates and can involve biofilm formation on patient catheters. Biofilms are inherently tolerant to antimicrobials, making them difficult to eradicate. Many antibiofilm agents alone do not have bactericidal activity; therefore, linking them to antibiotics is a promising antibiofilm strategy. However, many of these hybrid agents have not been tested in relevant preclinical settings, limiting their potential for clinical translation. Here, we evaluate a ciprofloxacin di-nitroxide hybrid (CDN11), previously reported to have antibiofilm activity against uropathogenic Escherichia coli (UPEC) strain UTI89 in vitro, as a potential UTI therapeutic using multiple preclinical models that reflect various aspects of UTI pathogenesis. We report improved in vitro activity over the parent drug ciprofloxacin against mature UTI89 biofilms formed inside polyethylene catheters. In bladder cell monolayers infected with UTI89, treatment with CDN11 afforded significant reduction in bacterial titers, including intracellular UPEC. Infected mouse bladders containing biofilm-like intracellular reservoirs of UPEC UTI89 showed decreased bacterial loads after ex vivo bladder treatment with CDN11. Activity for CDN11 was reported across different models of UTI, showcasing nitroxide-antibiotic hybridization as a promising antibiofilm approach. The pipeline we described here could be readily used in testing other new therapeutic compounds, fast-tracking the development of novel antibiofilm therapeutics.

5.
Macromol Rapid Commun ; : e2300274, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474483

RESUMO

Nitroxide groups covalently grafted to carbon fibers are used as anchoring sites for TEMPO-terminated polymers (poly-n-butylacrylate and polystyrene) in a "graft to" surface modification strategy. All surface-modified fibers are evaluated for their physical properties, showing that several treatments have enhanced the tensile strength and Young's modulus compared to the control fibers. Up to an 18% increase in tensile strength and 12% in Young's modulus are observed. Similarly, the evaluation of interfacial shear strength in an epoxy polymer shows improvements of up to 144% relative to the control sample. Interestingly, the polymer-grafted surfaces show smaller increases in interfacial shear strength compared to surfaces modified with a small molecule only. This counterintuitive result is attributed to the incompatibility, both chemical and physical, of the grafted polymers to the surrounding epoxy matrix. Molecular dynamics simulations of the interface suggest that the diminished increase in mechanical shear strength observed for the polymer grafted surfaces may be due to the lack of exposed chain ends, whereas the small molecule grafted interface exclusively presents chain ends to the resin interface, resulting in good improvements in mechanical properties.

6.
Mol Pharm ; 20(7): 3484-3493, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37289102

RESUMO

Infectious diseases caused by bacterial pathogens are a leading cause of mortality worldwide. In particular, recalcitrant bacterial communities known as biofilms are implicated in persistent and difficult to treat infections. With a diminishing antibiotic pipeline, new treatments are urgently required to combat biofilm infections. An emerging strategy to develop new treatments is the hybridization of antibiotics. The benefit of this approach is the extension of the useful lifetime of existing antibiotics. The oxazolidinones, which include the last resort antibiotic linezolid, are an attractive target for improving antibiofilm efficacy as they present one of the most recently discovered classes of antibiotics. A key step in the synthesis of new 3-aryl-2-oxazolidinone derivatives is the challenging formation of the oxazolidinone ring. Herein we report a direct synthetic route to the piperazinyl functionalized 3-aryl-2-oxazolidinone 17. We also demonstrate an application of these piperazine molecules by functionalizing them with a nitroxide moiety as a strategy to extend the useful lifetime of oxazolidinones and improve their potency against Methicillin-resistant Staphylococcus aureus (MRSA) biofilms. The antimicrobial susceptibility of the linezolid-nitroxide conjugate 11 and its corresponding methoxyamine derivative 12 (a control for biofilm dispersal) was assessed against planktonic cells and biofilms of MRSA. In comparison to linezolid and our lead compound 10 (a piperazinyl oxazolidinone derivative), the linezolid-nitroxide conjugate 11 displayed a minimum inhibitory concentration that was 4-16-fold higher. The opposite effect was seen in biofilms where the linezolid-nitroxide hybrid 11 was >2-fold more effective (160 µg/mL versus >320 µg/mL) in eradicating MRSA biofilms. The methoxyamine derivative 12 performed on par with linezolid. The drug-likeness of the compounds was also assessed, and all compounds were predicted to have good oral bioavailability. Our piperazinyl oxazolidinone derivative 10 was confirmed to be lead-like and would be a good lead candidate for future functionalized oxazolidinones. The modification of antibiotics with a dispersal agent appears to be a promising approach for eradicating MRSA biofilms and overcoming the antibiotic resistance associated with the biofilm mode of growth.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Oxazolidinonas , Oxazolidinonas/farmacologia , Linezolida/farmacologia , Oxindóis/farmacologia , Antibacterianos , Testes de Sensibilidade Microbiana , Biofilmes
7.
Antibiotics (Basel) ; 12(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36978331

RESUMO

Oxazolidinones are a broad-spectrum class of synthetic antibiotics that bind to the 50S ribosomal subunit of Gram-positive and Gram-negative bacteria. Many crystal structures of the ribosomes with oxazolidinone ligands have been reported in the literature, facilitating structure-based design using methods such as molecular docking. It would be of great interest to know in advance how well docking methods can reproduce the correct ligand binding modes and rank these correctly. We examined the performance of five molecular docking programs (AutoDock 4, AutoDock Vina, DOCK 6, rDock, and RLDock) for their ability to model ribosomal-ligand interactions with oxazolidinones. Eleven ribosomal crystal structures with oxazolidinones as the ligands were docked. The accuracy was evaluated by calculating the docked complexes' root-mean-square deviation (RMSD) and the program's internal scoring function. The rankings for each program based on the median RMSD between the native and predicted were DOCK 6 > AD4 > Vina > RDOCK >> RLDOCK. Results demonstrate that the top-performing program, DOCK 6, could accurately replicate the ligand binding in only four of the eleven ribosomes due to the poor electron density of said ribosomal structures. In this study, we have further benchmarked the performance of the DOCK 6 docking algorithm and scoring in improving virtual screening (VS) enrichment using the dataset of 285 oxazolidinone derivatives against oxazolidinone binding sites in the S. aureus ribosome. However, there was no clear trend between the structure and activity of the oxazolidinones in VS. Overall, the docking performance indicates that the RNA pocket's high flexibility does not allow for accurate docking prediction, highlighting the need to validate VS. protocols for ligand-RNA before future use. Later, we developed a re-scoring method incorporating absolute docking scores and molecular descriptors, and the results indicate that the descriptors greatly improve the correlation of docking scores and pMIC values. Morgan fingerprint analysis was also used, suggesting that DOCK 6 underpredicted molecules with tail modifications with acetamide, n-methylacetamide, or n-ethylacetamide and over-predicted molecule derivatives with methylamino bits. Alternatively, a ligand-based approach similar to a field template was taken, indicating that each derivative's tail groups have strong positive and negative electrostatic potential contributing to microbial activity. These results indicate that one should perform VS. campaigns of ribosomal antibiotics with care and that more comprehensive strategies, including molecular dynamics simulations and relative free energy calculations, might be necessary in conjunction with VS. and docking.

8.
Org Biomol Chem ; 21(8): 1780-1792, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36728689

RESUMO

Neurodegenerative diseases impose a considerable medical and public health burden on populations throughout the world. Oxidative stress, an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of reactive oxygen species (ROS), has been implicated in the progression of a number of neurodegenerative diseases. The manipulation of ROS levels may represent a promising treatment option to slow down neurodegeneration, although adequate potency of treatments has not yet been achieved. Using a hybrid pharmacology approach, free radical nitroxide antioxidants were hybridised with a class of natural antioxidants, flavonoids, to form a potential multitargeted antioxidant. Modification of the Baker-Venkataraman reaction achieved the flavonoid-nitroxide hybrids (6-9) in modest yields. Antioxidant evaluation of the hybrids by cyclic voltammetry showed both redox functionalities were still active, with little influence on oxidation potential. Assessment of the peroxyl radical scavenging ability through an ORAC assay showed reduced antioxidant activity of the hybrids compared to their individual components. It was hypothesized that the presence of the phenol in the hybrids creates a more acidic medium which does not favour regeneration of the nitroxide from the corresponding oxammonium cation, disturbing the typical catalytic cycle of peroxyl radical scavenging by nitroxides. This work highlights the potential intricacies involved with drug hybridization as a strategy for new therapeutic development.


Assuntos
Antioxidantes , Peróxidos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio
9.
Chem Asian J ; 17(11): e202200201, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35352479

RESUMO

Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.


Assuntos
Oxazolidinonas , Antibacterianos/farmacologia , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia
10.
ACS Omega ; 7(6): 5300-5310, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187345

RESUMO

Isothiazolones are widely used as biocides in industrial processing systems and personal care products, but their use to treat infections in humans has been hampered by their inherent cytotoxicity. Herein, we report a strategy to alleviate isothiazolone toxicity and improve antibacterial and antibiofilm potency by functionalization with a nitroxide moiety. Isothiazolone-nitroxide hybrids 6 and 22 were prepared over three steps in moderate yields (58 and 36%, respectively) from (Z)-3-(benzylsulfanyl)-propenoic acid. Hybrid 22 displayed better activity (minimum inhibitory concentration (MIC) = 35 µM) than the widely used methylisothiazolinone (MIT 1, MIC = 280 µM) against methicillin-susceptible Staphylococcus aureus (MSSA). Hybrid 22 was even more active against drug-resistant strains, such as vancomycin-resistant Staphylococcus aureus (VRSA, MIC = 8.75 µM) over MIT 1 (MIC = 280 µM). The enhanced antibacterial activity of hybrid 22 over MIT 1 was retained against established MSSA and VRSA biofilms, with minimum biofilm eradication concentration (MBEC) values of 35 and 70 µM, respectively, for 22 (the MBEC value for MIT 1 against both strains was ≥280 µM). No toxicity was observed in human epithelial T24 cells treated with hybrid 22 in concentrations up to 560 µM using a lactate dehydrogenase assay.

11.
Adv Mater ; 33(49): e2101874, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34606146

RESUMO

Organic electrochemical transistors (OECTs) are presently a focus of intense research and hold great potential in expanding the horizons of the bioelectronics industry. The notable characteristics of OECTs, including their electrolyte-gating, which offers intimate interfacing with biological environments, and aqueous stability, make them particularly suitable to be operated within a living organism (in vivo). Unlike the existing in vivo bioelectronic devices, mostly based on rigid metal electrodes, OECTs form a soft mechanical contact with the biological milieu and ensure a high signal-to-noise ratio because of their powerful amplification capability. Such features make OECTs particularly desirable for a wide range of in vivo applications, including electrophysiological recordings, neuron stimulation, and neurotransmitter detection, and regulation of plant processes in vivo. In this review, a systematic compilation of the in vivo applications is presented that are addressed by the OECT technology. First, the operating mechanisms, and the device design and materials design principles of OECTs are examined, and then multiple examples are provided from the literature while identifying the unique device properties that enable the application progress. Finally, one critically looks at the future of the OECT technology for in vivo bioelectronic applications.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Eletrodos , Eletrólitos
12.
ChemSusChem ; 13(9): 2386-2393, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32202387

RESUMO

An alternative synthetic route towards the widely employed electroactive poly(TEMPO methacrylate) (PTMA) via a thermally robust methoxyamine-protecting group is demonstrated herein. Protection of the radical moiety of hydroxy-TEMPO with a methyl functionality and subsequent esterification with methacrylic anhydride allows the high-yielding formation of the novel monomer methyl-TEMPO methacrylate (MTMA). The polymerization of MTMA to poly(MTMA) (PMTMA) is investigated via free radical polymerization and reversible addition-fragmentation chain-transfer polymerization (RAFT), a reversible-deactivation radical polymerization technique. Cleavage of the temperature-stable methoxyamine functionality by oxidative treatment of PMTMA with meta-chloroperbenzoic acid (mCPBA) releases the electroactive PTMA. The redox activity of PTMA was confirmed by cyclic voltammetry in lithium-ion coin cells.

13.
Front Chem ; 7: 824, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850313

RESUMO

Most free-living bacteria can attach to surfaces and aggregate to grow into multicellular communities encased in extracellular polymeric substances called biofilms. Biofilms are recalcitrant to antibiotic therapy and a major cause of persistent and recurrent infections by clinically important pathogens worldwide (e.g., Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus). Currently, most biofilm remediation strategies involve the development of biofilm-inhibition agents, aimed at preventing the early stages of biofilm formation, or biofilm-dispersal agents, aimed at disrupting the biofilm cell community. While both strategies offer some clinical promise, neither represents a direct treatment and eradication strategy for established biofilms. Consequently, the discovery and development of biofilm eradication agents as comprehensive, stand-alone biofilm treatment options has become a fundamental area of research. Here we review our current understanding of biofilm antibiotic tolerance mechanisms and provide an overview of biofilm remediation strategies, focusing primarily on the most promising biofilm eradication agents and approaches. Many of these offer exciting prospects for the future of biofilm therapeutics for a large number of infections that are currently refractory to conventional antibiotics.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31636066

RESUMO

Treatment of biofilm-related Staphylococcus aureus infections represents an important medical challenge worldwide, as biofilms, even those involving drug-susceptible S. aureus strains, are highly refractory to conventional antibiotic therapy. Nitroxides were recently shown to induce the dispersal of Gram-negative biofilms in vitro, but their action against Gram-positive bacterial biofilms remains unknown. Here, we demonstrate that the biofilm dispersal activity of nitroxides extends to S. aureus, a clinically important Gram-positive pathogen. Coadministration of the nitroxide CTEMPO (4-carboxy-2,2,6,6-tetramethylpiperidin-1-yloxyl) with ciprofloxacin significantly improved the biofilm eradication activity of the antibiotic against S. aureus Moreover, covalently linking the nitroxide to the antibiotic moiety further reduced the ciprofloxacin minimal biofilm eradication concentration. Microscopy analysis revealed that fluorescent nitroxide-antibiotic hybrids could penetrate S. aureus biofilms and enter cells localized at the surface and base of the biofilm structure. No toxicity to human cells was observed for the nitroxide CTEMPO or the nitroxide-antibiotic hybrids. Taken together, our results show that nitroxides can mediate the dispersal of Gram-positive biofilms and that dual-acting biofilm eradication antibiotics may provide broad-spectrum therapies for the treatment of biofilm-related infections.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óxidos de Nitrogênio/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
15.
Medchemcomm ; 10(5): 699-711, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31191860

RESUMO

Urinary tract infections (UTIs) are amongst the most common and prevalent infectious diseases worldwide, with uropathogenic Escherichia coli (UPEC) reported as the main causative pathogen. Fluoroquinolone antibiotics are commonly used to treat UTIs but for infections involving UPEC biofilms, which are commonly associated with catheter use and recurrent episodes, ciprofloxacin is often ineffective. Here we report the development of a ciprofloxacin-dinitroxide (CDN) conjugate with potent UPEC biofilm-eradication activity. CDN 11 exhibited a 2-fold increase in potency over the parent antibiotic ciprofloxacin against UPEC biofilms. Moreover, CDN 11 resulted in almost complete UPEC biofilm cell eradication (99.7%) at concentrations as low as 12.5 µM, and significantly potentiated ciprofloxacin's biofilm-eradication activity against UPEC upon co-administration. The biofilm-eradication activity of CDN 11 highlights the potential of nitroxide functionalized antibiotics as a promising strategy for the treatment of biofilm-related UTIs.

16.
Nanotechnology ; 30(33): 335301, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31013479

RESUMO

Recent advances in helium ion microscopy (HIM) have enabled the use of fine-focused He+ beams to image and shape materials at the nanoscale. In addition to traditional ion milling, the beam can also be used to induce reactions, such as cross-linking, in films of organic molecules. Here, we compare the use of focused ion and electron beams to fabricate spatially-defined cross-linked features in nanometre-thick films of tetracene. Ion and electron beam treatments were performed using the focussed energetic beams in a HIM and a scanning electron microscope, respectively. The patterned samples were analysed by optical microscopy, HIM, atomic force microscopy and nanoindentation. For samples fabricated using both energetic beams, the total deposited particle dose could be used to modify the optical properties, thickness and hardness of the dosed regions. X-ray photoelectron spectroscopy revealed that the dosed regions exhibited a higher sp3 content, consistent with crosslinking; rinsing in solvent showed that the patterned regions were insoluble and could be isolated by removing the unmodified film through dissolution. These molecular nanopatterns demonstrate the promise for ultrahigh resolution chemical lithography, and for fabrication of nanocomponents with tailored physical properties.

17.
Antibiotics (Basel) ; 8(1)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836686

RESUMO

Fluorescent probes are widely used for imaging and measuring dynamic processes in living cells. Fluorescent antibiotics are valuable tools for examining antibiotic⁻bacterial interactions, antimicrobial resistance and elucidating antibiotic modes of action. Profluorescent nitroxides are 'switch on' fluorescent probes used to visualize and monitor intracellular free radical and redox processes in biological systems. Here, we have combined the inherent fluorescent and antimicrobial properties of the fluoroquinolone core structure with the fluorescence suppression capabilities of a nitroxide to produce the first example of a profluorescent fluoroquinolone-nitroxide probe. Fluoroquinolone-nitroxide (FN) 14 exhibited significant suppression of fluorescence (>36-fold), which could be restored via radical trapping (fluoroquinolone-methoxyamine 17) or reduction to the corresponding hydroxylamine 20. Importantly, FN 14 was able to enter both Gram-positive and Gram-negative bacterial cells, emitted a measurable fluorescence signal upon cell entry (switch on), and retained antibacterial activity. In conclusion, profluorescent nitroxide antibiotics offer a new powerful tool for visualizing antibiotic⁻bacterial interactions and researching intracellular chemical processes.

18.
RSC Adv ; 9(5): 2848-2856, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35520486

RESUMO

This work demonstrates a new pathway to the direct on-surface fabrication of surface coatings by showing that application of a plasma can lead to dehalogenative coupling of small aromatic molecules at a catalytic surface. Specifically, we show that a room temperature, atmospheric pressure plasma can be used to fabricate a coating through a surface-confined dehalogenation reaction. Plasma treatments were performed using a dielectric barrier discharge (DBD) technique under pure nitrogen with a variety of power levels and durations. Samples were analysed by optical and helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), optical profilometry, and contact angle measurement. By varying the plasma parameters we could control the chemistry, morphology and roughness of the film. Surface wettability also varied with the plasma parameters, with high-dose plasmas leading to a hydrophobic surface with water contact angles up to 130°.

19.
Chemistry ; 24(71): 18873-18879, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30329188

RESUMO

A substrate-independent and versatile coating platform for (spatially resolved) surface functionalization, based on nitroxide radical coupling (NRC) reactions and the formation of thermo-labile alkoxyamine functional groups, was introduced. Nitroxide-decorated poly(glycidyl methacrylate) (PGMA) microspheres, obtained through bioinspired copolymer surface deposition using dopamine and a nitroxide functional dopamine derivative as monomers, were conjugated with small functional groups in a rewritable process. Reversible coding of the nitroxide functional microspheres by NRC and decoding through thermal alkoxyamine fission were monitored and characterized by electron paramagnetic resonance (EPR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In addition, this nitroxide coating system was exploited in "grafting-to" polymer surface ligations of poly(methyl methacrylate) (PMMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) in spatially confined areas. Polymer strands terminated with an Irgacure 2959 (2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone) photoinitiator were obtained through chain-transfer polymerization, and subsequently coupled to nitroxide-immobilized poly(dopamine) (PDA)-coated silicon substrates by using rapid photoclick NRC reactions. Light-driven polymer surface coding was visualized by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and XPS imaging.

20.
Free Radic Biol Med ; 128: 97-110, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29567391

RESUMO

Here we describe new fluorescent probes based on fluorescein and rhodamine that provide reversible, real-time insight into cellular redox status. The new probes incorporate bio-imaging relevant fluorophores derived from fluorescein and rhodamine linked with stable nitroxide radicals such that they cannot be cleaved, either spontaneously or enzymatically by cellular processes. Overall fluorescence emission is determined by reversible reduction and oxidation, hence the steady state emission intensity reflects the balance between redox potentials of critical redox couples within the cell. The permanent positive charge on the rhodamine-based probes leads to their rapid localisation within mitochondria in cells. Reduction and oxidation also leads to marked changes in the fluorophore lifetime, enabling monitoring by fluorescence lifetime imaging microscopy. Finally, we demonstrate that administration of a methyl ester version of the rhodamine-based probe can be used at concentrations as low as 5 nM to generate a readily detected response to redox stress within cells as analysed by flow cytometry.


Assuntos
Antioxidantes/química , Neoplasias Colorretais/metabolismo , Fibroblastos/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Imagem Molecular/métodos , Óxidos de Nitrogênio/química , Antioxidantes/metabolismo , Células Cultivadas , Neoplasias Colorretais/patologia , Fibroblastos/citologia , Corantes Fluorescentes/metabolismo , Humanos , Microscopia de Fluorescência , Mitocôndrias/patologia , Óxidos de Nitrogênio/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...