Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 10: 1048, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749836

RESUMO

Health and survival are key goals for selective breeding in farm animals. Progress, however, is often limited by the low heritability of these animal fitness traits in addition to measurement difficulties. In this respect, relevant early-life biomarkers may be useful for breeding purposes. Telomere length (TL), measured in leukocytes, is a good candidate biomarker since TL has been associated with health, ageing, and stress in humans and other species. However, telomere studies are very limited in farm animals. Here, we examined the genetic background, genomic architecture, and factors affecting bovine TL measurements in early life, and the association of the latter with animal fitness traits expressed later in life associated with survival, longevity, health, and reproduction. We studied two TL measurements, one at birth (TLB) and another during the first lactation (TLFL) of a cow. We performed a genome-wide association study of dairy cattle TL, the first in a non-human species, and found that TLB and TLFL are complex, polygenic, moderately heritable, and highly correlated traits. However, genomic associations with distinct chromosomal regions were identified for the two traits suggesting that their genomic architecture is not identical. This is reflected in changes in TL throughout an individual's life. TLB had a significant association with survival, length of productive life and future health status of the animal, and could be potentially used as an early-life biomarker for disease predisposition and longevity in dairy cattle.

2.
Sci Rep ; 8(1): 12748, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143784

RESUMO

Average telomere length (TL) in blood cells has been shown to decline with age in a range of vertebrate species, and there is evidence that TL is a heritable trait associated with late-life health and mortality in humans. In non-human mammals, few studies to date have examined lifelong telomere dynamics and no study has estimated the heritability of TL, despite these being important steps towards assessing the potential of TL as a biomarker of productive lifespan and health in livestock species. Here we measured relative leukocyte TL (RLTL) in 1,328 samples from 308 Holstein Friesian dairy cows and in 284 samples from 38 female calves. We found that RLTL declines after birth but remains relatively stable in adult life. We also calculated the first heritability estimates of RLTL in a livestock species which were 0.38 (SE = 0.03) and 0.32 (SE = 0.08) for the cow and the calf dataset, respectively. RLTL measured at the ages of one and five years were positively correlated with productive lifespan (p < 0.05). We conclude that bovine RLTL is a heritable trait, and its association with productive lifespan may be used in breeding programmes aiming to enhance cow longevity.


Assuntos
Bovinos/genética , Bovinos/fisiologia , Longevidade/fisiologia , Homeostase do Telômero , Telômero/metabolismo , Animais , Meio Ambiente , Estimativa de Kaplan-Meier , Leucócitos/metabolismo , Modelos Biológicos
3.
PLoS One ; 13(2): e0192864, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29438415

RESUMO

Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL) to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1) characterize the change in bovine relative leukocyte TL (RLTL) across the lifetime in Holstein Friesian dairy cattle, 2) estimate genetic parameters of RLTL over time and 3) investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08) and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954).


Assuntos
Envelhecimento/genética , Bovinos/genética , Modelos Genéticos , Encurtamento do Telômero/genética , Animais , DNA/genética , Feminino , Leucócitos/metabolismo , Longevidade/fisiologia , Análise de Regressão , Telômero/genética
4.
Mol Ecol ; 26(12): 3230-3240, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28027420

RESUMO

Mounting evidence suggests that average telomere length reflects previous stress and predicts subsequent survival across vertebrate species. In humans, leucocyte telomere length (LTL) is consistently shorter during adulthood in males than in females, although the causes of this sex difference and its generality to other mammals remain unknown. Here, we measured LTL in a cross-sectional sample of free-living Soay sheep and found shorter telomeres in males than in females in later adulthood (>3 years of age), but not in early life. This observation was not related to sex differences in growth or parasite burden, but we did find evidence for reduced LTL associated with increased horn growth in early life in males. Variation in LTL was independent of variation in the proportions of different leucocyte cell types, which are known to differ in telomere length. Our results provide the first evidence of sex differences in LTL from a wild mammal, but longitudinal studies are now required to determine whether telomere attrition rates or selective disappearance are responsible for these observed differences.


Assuntos
Leucócitos , Caracteres Sexuais , Ovinos/genética , Telômero/ultraestrutura , Animais , Estudos Transversais , Feminino , Masculino , Encurtamento do Telômero
5.
PLoS One ; 11(10): e0164046, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27723841

RESUMO

Telomere length (TL) is increasingly being used as a biomarker in epidemiological, biomedical and ecological studies. A wide range of DNA extraction techniques have been used in telomere experiments and recent quantitative PCR (qPCR) based studies suggest that the choice of DNA extraction method may influence average relative TL (RTL) measurements. Such extraction method effects may limit the use of historically collected DNA samples extracted with different methods. However, if extraction method effects are systematic an extraction method specific (MS) calibrator might be able to correct for them, because systematic effects would influence the calibrator sample in the same way as all other samples. In the present study we tested whether leukocyte RTL in blood samples from Holstein Friesian cattle and Soay sheep measured by qPCR was influenced by DNA extraction method and whether MS calibration could account for any observed differences. We compared two silica membrane-based DNA extraction kits and a salting out method. All extraction methods were optimized to yield enough high quality DNA for TL measurement. In both species we found that silica membrane-based DNA extraction methods produced shorter RTL measurements than the non-membrane-based method when calibrated against an identical calibrator. However, these differences were not statistically detectable when a MS calibrator was used to calculate RTL. This approach produced RTL measurements that were highly correlated across extraction methods (r > 0.76) and had coefficients of variation lower than 10% across plates of identical samples extracted by different methods. Our results are consistent with previous findings that popular membrane-based DNA extraction methods may lead to shorter RTL measurements than non-membrane-based methods. However, we also demonstrate that these differences can be accounted for by using an extraction method-specific calibrator, offering researchers a simple means of accounting for differences in RTL measurements from samples extracted by different DNA extraction methods within a study.


Assuntos
DNA , Reação em Cadeia da Polimerase em Tempo Real , Homeostase do Telômero , Telômero/genética , Animais , Calibragem , Bovinos , DNA/química , DNA/genética , DNA/isolamento & purificação , Feminino , Masculino , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Ovinos
6.
Aging Cell ; 15(1): 140-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26521726

RESUMO

Telomeres play a fundamental role in the maintenance of genomic integrity at a cellular level, and average leukocyte telomere length (LTL) has been proposed as a biomarker of organismal aging. However, studies tracking LTL across the entire life course of individuals are lacking. Here, we examined lifelong patterns of variation in LTL among four birth cohorts of female Soay sheep (Ovis aries) that were longitudinally monitored and sampled from birth to death. Over the first 4 months of life, there was within-individual loss of LTL, consistent with findings in the human and primate literature, but there was little evidence of consistent LTL loss associated with age after this point. Overall, we observed only weak evidence of individual consistency in LTL across years and over the entire lifespan: Within-individual variation was considerable, and birth cohorts differed markedly in their telomere dynamics. Despite the high levels of LTL variation within the lifetimes of individuals, there remained significant associations between LTL and longevity. Detailed analysis of the longitudinal data set showed that this association was driven by improved survival of individuals with longer LTL over the first 2 years of life. There was no evidence that LTL predicted survival in later adulthood. Our data provide the first evidence from a mammal that LTL can predict mortality and lifespan under natural conditions, and also highlight the potentially dynamic nature of LTL within the lifetimes of individuals experiencing a complex and highly variable environment.


Assuntos
Envelhecimento , Leucócitos/citologia , Longevidade/fisiologia , Homeostase do Telômero/fisiologia , Telômero/metabolismo , Animais , Biomarcadores/sangue , Ovinos
7.
DNA Repair (Amst) ; 25: 54-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25484304

RESUMO

More than 85% of all human cancers possess the ability to maintain chromosome ends, or telomeres, by virtue of telomerase activity. Loss of functional telomeres is incompatible with survival, and telomerase inhibition has been established in several model systems to be a tractable target for cancer therapy. As human tumour cells typically maintain short equilibrium telomere lengths, we wondered if enforced telomere elongation would positively or negatively impact cell survival. We found that telomere elongation beyond a certain length significantly decreased cell clonogenic survival after gamma irradiation. Susceptibility to irradiation was dosage-dependent and increased at telomere lengths exceeding 17kbp despite the fact that all chromosome ends retained telomeric DNA. These data suggest that an optimal telomere length may promote human cancer cell survival in the presence of genotoxic stress.


Assuntos
Neoplasias/genética , Telômero/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Raios gama , Humanos , Homeostase do Telômero , Células Tumorais Cultivadas
8.
Methods Ecol Evol ; 5(4): 299-310, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25834722

RESUMO

Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age.Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before.We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL.Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...