Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764415

RESUMO

In this research, activated carbon (AC) was synthesized from ligno-cellulosic residues of Adansonia kilima (Baobab) wood chips (AKTW) using two-step semi-carbonization and subsequent pyrolysis using microwave-induced heating (MWP) in the presence of a mild activating agent of K2CO3. The influence of process input variables of microwave power (x1), residence time (y1), and amount of K2CO3 (z1) were analysed to yield superior quality carbon having maximum removal efficiencies (R1) for lead (II) cations from waste effluents, fixed carbon percentages (R2), and carbon yield percentages (R3). Analysis of variance (ANOVA) was used to develop relevant mathematical models, with an appropriate statistical assessment of errors. Level factorial response surface methodology (RSM) relying on the Box-Behnken design (BBD) was implemented for the experimental design. The surface area and porous texture of the samples were determined using Brunauer, Emmett, and Teller (BET) adsorption/desorption curves based on the N2 isotherm. Surface morphological structure was observed using field emission scanning electron microscopic (FESEM) analysis. Thermogravimetric analysis (TGA) was carried out to observe the thermal stability of the sample. Change in the carbon content of the samples was determined using ultimate analysis. X-ray diffraction (XRD) analysis was performed to observe the crystalline and amorphous texture of the samples. The retention of a higher proportion of fixed carbon (80.01%) ensures that the synthesized adsorbent (AKTWAC) will have a greater adsorption capacity while avoiding unwanted catalytic activity for our synthesized final sample.

2.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669883

RESUMO

This study deals with the preparation of activated carbon (CDSP) from date seed powder (DSP) by chemical activation to eliminate polyaromatic hydrocarbon-PAHs (naphthalene-C10H8) from synthetic wastewater. The chemical activation process was carried out using a weak Lewis acid of zinc acetate dihydrate salt (Zn(CH3CO2)2·2H2O). The equilibrium isotherm and kinetics analysis was carried out using DSP and CDSP samples, and their performances were compared for the removal of a volatile organic compound-naphthalene (C10H8)-from synthetic aqueous effluents or wastewater. The equilibrium isotherm data was analyzed using the linear regression model of the Langmuir, Freundlich and Temkin equations. The R2 values for the Langmuir isotherm were 0.93 and 0.99 for naphthalene (C10H8) adsorption using DSP and CDSP, respectively. CDSP showed a higher equilibrium sorption capacity (qe) of 379.64 µg/g. DSP had an equilibrium sorption capacity of 369.06 µg/g for C10H8. The rate of reaction was estimated for C10H8 adsorption using a pseudo-first order, pseudo-second order and Elovich kinetic equation. The reaction mechanism for both the sorbents (CDSP and DSP) was studied using the intraparticle diffusion model. The equilibrium data was well-fitted with the pseudo-second order kinetics model showing the chemisorption nature of the equilibrium system. CDSP showed a higher sorption performance than DSP due to its higher BET surface area and carbon content. Physiochemical characterizations of the DSP and CDSP samples were carried out using the BET surface area analysis, Fourier-scanning microscopic analysis (FSEM), energy-dispersive X-ray (EDX) analysis and Fourier-transform spectroscopic analysis (FTIR). A thermogravimetric and ultimate analysis was also carried out to determine the carbon content in both the sorbents (DSP and CDSP) here. This study confirms the potential of DSP and CDSP to remove C10H8 from lab-scale synthetic wastewater.


Assuntos
Ácidos de Lewis/química , Modelos Moleculares , Naftalenos/análise , Temperatura , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise , Adsorção , Difusão , Cinética , Modelos Lineares , Nitrogênio/química , Espectrometria por Raios X , Termogravimetria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...