Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(3): e56155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618475

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a very common gastrointestinal disorder encountered in clinical practice. In this study, we estimated the prevalence of isolated IBS and its associated demographic factors among the adult population in the Kingdom of Bahrain. METHODS: A cross-sectional study was conducted targeting adults in Bahrain aged 18 years and above. Individuals with a prior diagnosis of any bowel ailment were excluded. Data was acquired via a self-administered questionnaire. IBS-specific questions were derived from the validated Rome IV diagnostic questionnaire for adults. The scoring methodology inherent to this questionnaire was used for the diagnosis of IBS. The data collection process remained anonymous. Data was compiled using Excel spreadsheets, and the Statistical Package for Social Sciences (SPSS) was employed for analytical purposes. Associations between IBS and demographical or behavioral characteristics were explored using the Chi-square test. RESULTS: The prevalence of isolated IBS, adopting the Rome IV criteria, was 156 (18.3%) and IBS-M (mixed) type was 40 (38.1%) of these. IBS was predominantly higher among females compared to males (340 vs 235; 22.6% vs 11.9%). The majority of IBS cases (121, 21%) were in the 41-50 age group. A statistically significant association has been demonstrated between IBS and GERD using Pearson's chi-squared test (p-value = 0.000). Similarly, it was linked to indigestion (p-value = 0.00). CONCLUSIONS: Although the percentage appeared to be significantly higher than the global prevalence of 4% (using Rome IV criteria), our findings were equivalent to the reports conducted in the Middle East region. Integrating holistic patient assessments, including quality of life metrics, along with anxiety, depression, and vitamin D deficiency, will further enhance the understanding of IBS in Bahrain and its impact on the patients and the health services utilization.

2.
Int J Biol Macromol ; 250: 126250, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562464

RESUMO

This study aimed to prepare a novel colorimetric indicator film from virtually pure (99 %) amylose (AM) and anthocyanins extracted from red cabbage (RCA). The AM used was a unique engineered bulk material extracted from transgenic barley grains. Films produced by solution casting were compared to normal barely starch (NB) and pure barley amylopectin (AP), with amylose contents of 30 % and 0 %, respectively. The pH-indicator films were produced by incorporation of RCA into the different starch support matrices with different amylose contents. Barrier, thermal, and mechanical properties, photo degradation stability, and release behavior data revealed that RCA interact differently through the glucan matrices. Microstructural observations showed that RCA were evenly dispersed in the glucan matrix, and AM+RCA indicator films showed high UV-barrier and mechanical performance over normal starch. FTIR revealed that RCA was properly affected by the AM matrix. Moreover, the AM+RCA films showed sensitive color changes in the pH range (2-11) and a predominant Fickian diffusion release mechanism for RCA. This study provides for the first time data regarding AM films with RCA and their promising potential for application as support matrices in responsive food and other industrial biodegradable packaging materials.

3.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916785

RESUMO

Polysaccharide-based nanosystem is an umbrella term for many areas within research and technology dealing with polysaccharides that have at least one of their dimensions in the realm of a few hundreds of nanometers. Nanoparticles, nanocrystals, nanofibers, nanofilms, and nanonetworks can be fabricated from many different polysaccharide resources. Abundance in nature, cellulose, starch, chitosan, and pectin of different molecular structures are widely used to fabricate nanosystems for versatile industrial applications. This review presents the dissolution and modification of polysaccharides, which are influenced by their different molecular structures and applications. The dissolution ways include conventional organic solvents, ionic liquids, inorganic strong alkali and acids, enzymes, and hydrothermal treatment. Rheological properties of polysaccharide-based nano slurries are tailored for the purpose functions of the final products, e.g., imparting electrostatic functions of nanofibers to reduce viscosity by using lithium chloride and octenyl succinic acid to increase the hydrophobicity. Nowadays, synergistic effects of polysaccharide blends are increasingly highlighted. In particular, the reinforcing effect of nanoparticles, nanocrystals, nanowhiskers, and nanofibers to hydrogels, aerogels, and scaffolds, and the double network hydrogels of a rigid skeleton and a ductile substance have been developed for many emerging issues.

4.
Polymers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335565

RESUMO

As biodegradable and eco-friendly bio-resources, polysaccharides from a wide range of sources show steadily increasing interest. The increasing fossil-based production of materials are heavily associated with environmental and climate concerns, these biopolymers are addressing such concerns in important areas such as food and biomedical applications. Among polysaccharides, high amylose starch (HAS) has made major progress to marketable products due to its unique properties and enhanced nutritional values in food applications. While high amylose-maize, wheat, barley and potato are commercially available, HAS variants of other crops have been developed recently and is expected to be commercially available in the near future. This review edifies various forms and processing techniques used to produce HAS-based polymers and composites addressing their favorable properties as compared to normal starch. Low toxic and high compatibility natural plasticizers are of great concern in the processing of HAS. Further emphasis, is also given to some essential film properties such as mechanical and barrier properties for HAS-based materials. The functionality of HAS-based functionality can be improved by using different fillers as well as by modulating the inherent structures of HAS. We also identify specific opportunities for HAS-based food and biomedical fabrications aiming to produce cheaper, better, and more eco-friendly materials. We acknowledge that a multidisciplinary approach is required to achieve further improvement of HAS-based products providing entirely new types of sustainable materials.

5.
Carbohydr Polym ; 253: 117277, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278948

RESUMO

Thermoplastic, polysaccharide-based plastics are environmentally friendly. However, typical shortcomings include lack of water resistance and poor mechanical properties. Nanocomposite manufacturing using pure, highly linear, polysaccharides can overcome such limitations. Cast nanocomposites were fabricated with plant engineered pure amylose (AM), produced in bulk quantity in transgenic barley grain, and cellulose nanofibers (CNF), extracted from agrowaste sugar beet pulp. Morphology, crystallinity, chemical heterogeneity, mechanics, dynamic mechanical, gas and water permeability, and contact angle of the films were investigated. Blending CNF into the AM matrix significantly enhanced the crystallinity, mechanical properties and permeability, whereas glycerol increased elongation at break, mainly by plasticizing the AM. There was significant phase separation between AM and CNF. Dynamic plasticizing and anti-plasticizing effects of both CNF and glycerol were demonstrated by NMR demonstrating high molecular order, but also non-crystalline, and evenly distributed 20 nm-sized glycerol domains. This study demonstrates a new lead in functional polysaccharide-based bioplastic systems.


Assuntos
Amilose/química , Plásticos Biodegradáveis/química , Celulose/química , Nanocompostos/química , Nanofibras/química , Extratos Vegetais/química , Amilose/isolamento & purificação , Beta vulgaris/química , Celulose/isolamento & purificação , Cristalização , Farinha , Glicerol/química , Hordeum/química , Permeabilidade , Plastificantes/química , Maleabilidade , Amido/química , Resistência à Tração , Temperatura de Transição
6.
J Funct Biomater ; 9(2)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29786635

RESUMO

The use of biodegradable materials for shopping bag production, and other products made from plastics, has recently been an object of intense research-with the aim of reducing the environmental burdens given by conventional materials. Chitosan is a potential material because of its biocompatibility, degradability, and non-toxicity. It is a semi-natural biopolymeric material produced by the deacetylation of chitin, which is the second most abundant natural biopolymer (after cellulose). Chitin is found in the exoskeleton of insects, marine crustaceans, and the cell walls of certain fungi and algae. The raw materials most abundantly available are the shells of crab, shrimp, and prawn. Hence, in this study chitosan was selected as one of the main components of biodegradable materials used for shopping bag production. Firstly, chitin was extracted from shrimp shell waste and then converted to chitosan. The chitosan was next ground to a powder. Although, currently, polyethylene bags are prepared by blown extrusion, in this preliminary research the chitosan powder was dissolved in a solvent and the films were cast. Composite films with several fillers were used as a reinforcement at different dosages to optimize mechanical properties, which have been assessed using tensile tests. These results were compared with those of conventional polyethylene bags used in Egypt. Overall, the chitosan films were found to have a lower ductility but appeared to be strong enough to fulfill shopping bag functions. The addition of fillers, such as chitin whiskers and rice straw, enhanced the mechanical properties of chitosan films, while the addition of chitin worsened overall mechanical behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...