Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1239852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929177

RESUMO

Elevated temperature has already caused a significant loss of wine growing areas and resulted in inferior fruit quality, particularly in arid and semi-arid regions. The existence of broad genetic diversity in V. vinifera is key in adapting viticulture to climate change; however, a lack of understanding on the variability in berry metabolic response to climate change remains a major challenge to build ad-hoc strategies for quality fruit production. In the present study, we examined the impact of a consistent temperature difference between two vineyards on polyphenol metabolism in the berries of 20 red V. vinifera cultivars across three consecutive seasons (2017-2019). The results emphasize a varietal specific response in the content of several phenylpropanoid metabolites; the interaction factor between the variety and the vineyard location was also found significant. Higher seasonal temperatures were coupled with lower flavonol and anthocyanin contents, but such reductions were not related with the level of expression of phenylpropanoid related genes. Hierarchical clustering analyses of the metabolic data revealed varieties with a location specific response, exceptional among them was Tempranillo, suggesting a greater susceptibility to temperature of this cultivar. In conclusion, our results indicate that the extensive genetic capacity of V. vinifera bears a significant potential to withstand temperature increase associated with climate change.

2.
Planta ; 258(1): 10, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269337

RESUMO

MAIN CONCLUSION: A multi-year study of perennial Z. dumosum shows a consistent seasonal pattern in the changes of petiole metabolism, involving mainly organic acids, polyols, phenylpropanoids, sulfate conjugates, and piperazines. GC-MS and UPLC-QTOF-MS-based metabolite profiling was performed on the petioles of the perennial desert shrub Zygophyllum dumosum Boiss (Zygophyllaceae). The petioles, which are physiologically functional throughout the year and, thus, exposed to seasonal rhythms, were collected every month for 3 years from their natural ecosystem on a southeast-facing slope. Results showed a clear multi-year pattern following seasonal successions, despite different climate conditions, i.e., rainy and drought years, throughout the research period. The metabolic pattern of change encompassed an increase in the central metabolites, including most polyols, e.g., stress-related D-pinitol, organic and sugar acids, and in the dominant specialized metabolites, which were tentatively identified as sulfate, flavonoid, and piperazine conjugates during the summer-autumn period, while significantly high levels of free amino acids were detected during the winter-spring period. In parallel, the levels of most sugars (including glucose and fructose) increased in the petioles at the flowering stage at the beginning of the spring, while most of the di- and tri-saccharides accumulated at the beginning of seed development (May-June). Analysis of the conserved seasonal metabolite pattern of change shows that metabolic events are mostly related to the stage of plant development and its interaction with the environment and less to environmental conditions per se.


Assuntos
Ecossistema , Zygophyllum , Estações do Ano , Metaboloma , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica/métodos
3.
Front Plant Sci ; 14: 1114696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844090

RESUMO

Continually increasing global temperature could severely affect grape berry metabolite accumulation and ultimately wine polyphenol concentration and color intensity. To explore the effect of late shoot pruning on grape berry and wine metabolite composition, field trials were carried out on Vitis vinifera cv. Malbec and cv. Syrah grafted on 110 Richter rootstock. Fifty-one metabolites were detected and unequivocally annotated employing UPLC-MS based metabolite profiling. Integrating the data using hierarchical clustering showed a significant effect of late pruning treatments on must and wine metabolites. Syrah metabolite profiles were characterized by a general trend of higher metabolite content in the late shoot pruning treatments, while Malbec profiles did not show a consistent trend. In summary, late shoot pruning exerts a significant effect, though varietal specific, on must and wine quality-related metabolites, possibly related to enhanced photosynthetic efficiency, which should be taken into consideration when planning mitigating strategies in warm climates.

4.
Plant Sci ; 325: 111460, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122813

RESUMO

Accessing freshwater resources for agriculture becomes more complex due to increasing demands and declining water quality. Alternative water sources, such as saline water, require ad hoc solutions. Therefore, understanding roots' response to saline water is crucial for future agriculture. We examined the response of three grapevine rootstocks (Paulsen 1103, Richter 110 and SO4) to salt stress. The rootstocks were subjected to two salinity treatments: 10 mM and 30 mM NaCl (EC = 2 and 4 ds/m, respectively). Root and shoot samples were taken at the end of the experiment for morphologic and ionomic analyses. The specific root area (SRA) increased in response to salinity for all three rootstocks due to root tissue density and average root diameter reductions. Salinity also led to increased root Na+ and Cl- contents and reduced root K+/Na+ ratio, parallel to increased leaf Cl- but not Na+ contents. SO4 showed improved chloride and sodium exclusion, concomitant with its highest SRA, resulting from the increase in its thin roots' contribution to the total root system surface area. We suggest that enhanced SRA combined with decreased root tissue density and diameter may improve grapevines' salt exclusion by less salt uptake from the soil.


Assuntos
Vitis , Vitis/fisiologia , Raízes de Plantas/fisiologia , Estresse Salino , Folhas de Planta/fisiologia , Salinidade , Sódio/análise , Cloretos
5.
Hortic Res ; 9: uhac110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795394

RESUMO

The factors underlying the plant collapse of certain melon-pumpkin graft combinations are not fully understood. Our working hypothesis was that impairment of photoassimilates transport in incompatible combinations induces an imbalance in the homeostasis of root auxin (indole-3-acetic acid; IAA) and of cytokinins, probably triggering plant collapse. Root IAA and cytokinins levels in the presence and absence of fruit and changes in root and scion metabolites were investigated in compatible and incompatible combinations. We showed elevated levels of IAA, 2-oxoindole-3-acetic acid (IAA catabolite), indole-3-acetylaspartate (IAA conjugate), and cis-zeatin-type cytokinins, but low levels of trans-zeatin-type cytokinins in the roots of plants of the incompatible combination during fruit ripening. Similarly, during fruit ripening, the expression of the YUCCA genes, YUC2, YUC6, and YUC11 (required for auxin biosynthesis), the GRETCHEN-HAGEN3 gene (required for auxin conjugation), and the cytokinin oxidase/dehydrogenase 7 (CKX7) gene (regulates the irreversible degradation of cytokinin) was enhanced in the roots of plants of the incompatible combination. Moreover, in the incompatible combination the fruiting process restricted transport of photoassimilates to the rootstock and induces their accumulation in the scion. In addition, high levels of hydrogen peroxide and malondialdehyde and reduced activity of antioxidant enzymes were observed in the roots of the incompatible graft. Our results showed that the collapse of the incompatible graft combination during fruit ripening is closely associated with a dramatic accumulation of IAA in the roots, which probably elicits oxidative damage and disturbs the balance of IAA and cytokinins that is of critical importance in melon-pumpkin graft compatibility.

6.
Hortic Res ; 9: uhac061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531316

RESUMO

Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.

7.
J Agric Food Chem ; 70(16): 5049-5056, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412322

RESUMO

Elicitation treatments of grape cell cultures with methyl jasmonate (MeJA), ultraviolet-C (UV-C) irradiation, and sucrose induce mild production of stilbenes and flavonoids due to limited substrate availability. However, these treatments cause a synergistic boost of stilbenes production when applied to two phenylalanine (Phe)-enriched transgenic grape cell lines, AroG* + STS and AroG* + FLS. The combined treatment of UV-C elicitation on the Phe-fed AroG* + STS line resulted in the highest content of stilbenes (37.8-fold increase, 17.39 mg/g dry weight (DW)) mainly due to resveratrol (64-fold, 3.23 mg/g DW) and viniferin (1343-fold, 13.43 mg/g DW). The synergistic increase following either UV-C or MeJA elicitation was due to the induction of stilbene-related genes, while sucrose treatment had no effect on gene expression levels and served as an additional carbon source for phenylpropanoids. The combined strategy presented may enable future usage of grape cell cultures for the production of stilbenes and in particular viniferin.


Assuntos
Estilbenos , Vitis , Técnicas de Cultura de Células , Fenilalanina/metabolismo , Estilbenos/metabolismo , Sacarose/metabolismo , Vitis/metabolismo
8.
Front Plant Sci ; 13: 847268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350300

RESUMO

Exploiting consistent differences in radiation and average air temperature between two experimental vineyards (Ramat Negev, RN and Mitzpe Ramon, MR), we examined the impact of climate variations on total carotenoids, redox status, and phenylpropanoid metabolism in the berries of 10 white wine grapevine (Vitis vinifera) cultivars across three consecutive seasons (2017-2019). The differences in carotenoid and phenylpropanoid contents between sites were seasonal and varietal dependent. However, the warmer RN site was generally associated with higher H2O2 levels and carotenoid degradation, and lower flavonol contents than the cooler MR site. Enhanced carotenoid degradation was positively correlated with radiation and daily degree days, leading to a greater drop in content from véraison to harvest in Colombard, Sauvignon Blanc, and Semillon berries. Analyses of berry H2O2 and phenylpropanoids suggested differences between cultivars in the links between H2O2 and flavonol contents. Generally, however, grapes with higher H2O2 content seem to have lower flavonol contents. Correlative network analyses revealed that phenylpropanoids at the warmer RN site are tightly linked to the radiation and temperature regimes during fruit ripening, indicating potentially harmful effect of warmer climates on berry quality. Specifically, flavan-3-ols were negatively correlated with radiation at RN. Principal component analysis showed that Muscat Blanc, Riesling, Semillon, and Sauvignon Blanc were the most site sensitive cultivars. Our results suggest that grapevine biodiversity is likely the key to withstand global warming hazards.

9.
Front Plant Sci ; 13: 1024588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762178

RESUMO

Grafting has the potential to improve melon fruit yield and quality, but it is currently held that a lack of compatibility between the rootstock and scion compromises such an effect. To throw light on this subject, we studied melon-pumpkin graft combinations with different levels of compatibility to assess to the effect of the rootstock identity on melon fruit yield and quality, including total fruit ortho-diphenols, total flavonoids, and primary fruit metabolites. Melon cv. 'Kiran' (Ki) was grafted onto three pumpkin rootstocks, 'TZ-148' (TZ), 'Shimshon' (Sh), and '53006' (r53), characterized by high, moderate, and low compatibility, respectively. The non-grafted melon cultivar Ki was used as the control. The incompatible combination Ki/r53 gave the lowest fruit yield and the lowest average fruit weight. In that combination, the content of total ortho-diphenols increased vs. Ki and Ki/TZ and that of total flavonoids decreased vs. Ki/Sh. In addition, concentrations of the amino acids, glutamate, methionine, valine, alanine, glycine, and serine, increased in the pulp of the two compatible combinations, i.e., Ki/TZ and Ki/Sh, suggesting that rootstock identity and compatibility with melon Ki scion modulated amino acid synthesis. Our results show an association between rootstock identity (and level of compatibility with the scion) and an enhancement of fruit nutritional values, i.e., high concentrations of organic acids (determined as citrate, malate, fumarate, and succinate) and soluble carbohydrates (sucrose) were recorded in the pulp of the two compatible combinations, i.e., Ki/TZ and Ki/Sh.

10.
J Agric Food Chem ; 69(28): 7922-7931, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236173

RESUMO

Stilbenes and flavonoids are two major health-promoting phenylpropanoid groups in grapes. Attempts to promote the accumulation of one group usually resulted in a decrease in the other. This study presents a unique strategy for simultaneously increasing metabolites in both groups in V. vinifera cv. Gamay Red grape cell culture, by overexpression of flavonol synthase (FLS) and increasing Phe availability. Increased Phe availability was achieved by transforming the cell culture with a second gene, the feedback-insensitive E. coli DAHP synthase (AroG*), and feeding them with Phe. A combined metabolomic and transcriptomic analysis reveals that the increase in both phenylpropanoid groups is accompanied by an induction of many of the flavonoid biosynthetic genes and no change in the expression levels of stilbene synthase. Furthermore, FLS overexpression with increased Phe availability resulted in higher anthocyanin levels, mainly those derived from delphinidin, due to the induction of F3'5'H. These insights may contribute to the development of grape berries with increased health benefits.


Assuntos
Estilbenos , Vitis , Antocianinas , Técnicas de Cultura de Células , Escherichia coli/genética , Flavonoides , Frutas/genética , Regulação da Expressão Gênica de Plantas , Vitis/genética
11.
Plant Sci ; 306: 110852, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775359

RESUMO

The effect of the rootstock on the acropetal and basipetal transport of photoassimilates and hormones was studied in the 'Kiran' (Ki) melon cultivar grafted onto pumpkin rootstocks with different degrees of compatibility. A complementary experiment was performed to compare the incompatible combination (as evidenced by plant collapse at the fruit ripening stage), designated Ki/r53, with self-grafted r53/r53 as a model compatible combination. Both experiments showed the accumulation of a number of amino acids, sugars, and sugar alcohols in the scion of the incompatible Ki/r53 grafts. Additionally, they showed a marked reduction of trans-zeatin-type cytokinins and an elevated content of cis-zeatin-type cytokinins in the rootstock, and the opposite pattern in the scion, hinting at the possible involvement of a hormonal signal for graft compatibility. There was no direct evidence of a blockage at the graft union, since hormone acropetal and basipetal trafficking was demonstrated for all combinations. Dye uptake experiments did not show xylem flow impairment. A possibly significant finding in the incompatible combination was the deposition of undifferentiated cells in the hollow space that replaces the pith region in melon and pumpkin. The link between the above findings and the collapse of the plants of the incompatible combination remains unclear.


Assuntos
Transporte Biológico/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/genética , Cucurbita/crescimento & desenvolvimento , Cucurbita/genética , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fotossíntese/genética , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
12.
J Agric Food Chem ; 69(10): 3124-3133, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33683879

RESUMO

Stilbenes are phytoalexins with health-promoting benefits for humans. Here, we boost stilbenes' production, and in particular the resveratrol dehydrodimer viniferin, with significant pharmacological properties, by overexpressing stilbene synthase (STS) under unlimited phenylalanine (Phe) supply. Vitis vinifera cell cultures were co-transformed with a feedback-insensitive E. coli DAHP synthase (AroG*) and STS genes, under constitutive promoters. All transgenic lines had increased levels of Phe and stilbenes (74-fold higher viniferin reaching 0.74 mg/g DW). External Phe feeding of AroG* + STS lines caused a synergistic effect on resveratrol and viniferin accumulation, achieving a 26-fold (1.33 mg/g DW) increase in resveratrol and a 620-fold increase (6.2 mg/g DW) in viniferin, which to date is the highest viniferin accumulation reported in plant cultures. We suggest that this strategy of combining higher Phe availability and STS expression generates grape cell cultures as potential factories for sustainable production of stilbenes with a minor effect on the levels of flavonoids.


Assuntos
Estilbenos , Vitis , Técnicas de Cultura de Células , Escherichia coli , Humanos , Engenharia Metabólica , Vitis/genética
13.
Nat Biotechnol ; 39(2): 169-173, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169034

RESUMO

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.


Assuntos
Algoritmos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Animais , Anuros , Humanos
14.
Front Plant Sci ; 11: 822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676084

RESUMO

Grapevine represents a particularly interesting species as concerns phenotypic plasticity, considering that the terroir, meaning the contribution of the geography, geology, and climate of a certain place, together with the agronomical practices utilized, may deeply influence the berry phenotype at the physiological, molecular, and biochemical levels. This phenomenon leads to the production of wines that, although produced from the same variety, exhibit different enological profiles and represents an issue of increasing interest from both a biological and an economic point of view. The main objective of the present study was to deepen the understanding of phenotypic plasticity in grapevine, trying to dissect the role of one its important components - the soil - by investigating the singular effect that different physico-chemical soil properties can produce in terms of berry plasticity at the phenological, physiological, and biochemical levels in a red and a white variety of great economic importance in Italy and overseas: Corvina and Glera. The results indicated a genotype-dependent response to the soil factor, with higher biochemical plasticity in Corvina with respect to Glera and suggested a key role of specific soil properties, including the skeleton, texture, and mineral composition, on the metabolite profile of berry skin.

15.
Plant Sci ; 293: 110409, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081259

RESUMO

Plants respond and adapt to changes in their environment by employing a wide variety of genetic, molecular, and biochemical mechanisms. When so doing, they trigger large-scale rearrangements at the metabolic and transcriptional levels. The dynamics and patterns of these rearrangements and how they govern a stress response is not clear. In this opinion, we discuss a plant's response to stress from the perspective of the metabolic gene co-expression network and its rearrangement upon stress. As a case study, we use publicly available expression data of Arabidopsis thaliana plants exposed to heat and drought stress to evaluate and compare the co-expression networks of metabolic genes. The analysis highlights that stress conditions can lead to metabolic tightening and expansion of the co-expression network. We argue that this rearrangement could play a role in a plant's response to stress and thus may be an additional tool to assess and understand stress tolerance/sensitivity. Additional studies are needed to evaluate the metabolic network in response to multiple stresses at various intensities and across different genetic backgrounds (e.g., intra- and inter-species, sensitive and tolerant eco/genotypes).


Assuntos
Adaptação Fisiológica/fisiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Estresse Fisiológico/fisiologia , Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Secas , Resposta ao Choque Térmico
16.
PLoS One ; 15(1): e0227192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923191

RESUMO

BACKGROUND: Rootstock has a significant impact on plant growth and development, including fruit maturation. However, the existence of mutual interaction between scion and rootstock is often neglected. To explore the origin of different fruit quality traits in citrus, we studied the effect of rootstock and the reciprocal interaction between scion and rootstock of nine combinations; three mandarin varieties grafted on three different rootstocks. We analyzed the metabolic profile of juice via gas and liquid chromatography-mass spectrometry (GC-MS and LC-MS, respectively). Additionally, we profiled phloem sap composition in the scion and the rootstock. Quality traits of fruit and their physio-chemical characteristics were also evaluated. RESULTS: For all three cultivars, rootstock was found to affect fruit yield and biochemical fruit quality parameters (sugar and acidity) in interactions with the scions. In mandarin juice, eight of 48 compounds (two primary and six secondary) were related directly to the rootstock, and another seven (one primary and six secondary) were interactively affected by scion and rootstock. In scion and rootstock sap, six and 14 of 53 and 55 primary metabolites, respectively, were directly affected by the rootstock, while 42 and 33 were affected by rootstock interactively with scion, respectively. CONCLUSION: In this work, we show for the first time a reciprocal effect between rootstock and scion. Based on our results, the scion and rootstock interaction might be organ, distance or time dependent.


Assuntos
Citrus/crescimento & desenvolvimento , Citrus/metabolismo , Sucos de Frutas e Vegetais/análise , Metabolômica/métodos , Floema/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Ácido Ascórbico/análise , Frutas/crescimento & desenvolvimento , Israel , Metaboloma , Açúcares/análise
17.
Front Plant Sci ; 11: 588739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391301

RESUMO

Global climate change and the expected increase in temperature are altering the relationship between geography and grapevine (V. vinifera) varietal performance, and the implications of which are yet to be fully understood. We investigated berry phenology and biochemistry of 30 cultivars, 20 red and 10 white, across three seasons (2017-2019) in response to a consistent average temperature difference of 1.5°C during the growing season between two experimental sites. The experiments were conducted at Ramat Negev (RN) and Ramon (MR) vineyards, located in the Negev desert, Israel. A significant interaction between vineyard location, season, and variety affected phenology and berry indices. The warmer RN site was generally associated with an advanced phenological course for the white cultivars, which reached harvest up to 2 weeks earlier than at the MR site. The white cultivars also showed stronger correlation between non-consecutive phenological stages than did the red ones. In contrast, harvest time of red cultivars considerably varied according to seasons and sites. Warmer conditions extended fruit developmental phases, causing berry shriveling and cluster collapse in a few cultivars such as Pinot Noir, Ruby Cabernet, and Tempranillo. Analyses of organic acid content suggested differences between red and white cultivars in the content of malate, tartrate, and citrate in response to the temperature difference between sites. However, generally, cultivars at lower temperatures exhibited lower concentrations of pulp organic acids at véraison, but acid degradation until harvest was reduced, compared to the significant pace of acid decline at the warmer site. Sugars showed the greatest differences between sites in both white and red berries at véraison, but differences were seasonal dependent. At harvest, cultivars of both groups exhibited significant variation in hexose/sucrose ratio, and the averages of which varied from 1.6 to 2.9. Hexose/sucrose ratio was significantly higher among the red cultivars at the warmer RN, while this tendency was very slight among white cultivars. White cultivars seem to harbor a considerable degree of resilience due to a combination of earlier and shorter ripening phase, which avoids most of the summer heat. Taken together, our study demonstrates that the extensive genetic capacity of V. vinifera bears significant potential and plasticity to withstand the temperature increase associated with climate change.

18.
Commun Biol ; 2: 214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240252

RESUMO

The identification and understanding of metabolic pathways is a key aspect in crop improvement and drug design. The common approach for their detection is based on gene annotation and ontology. Correlation-based network analysis, where metabolites are arranged into network formation, is used as a complentary tool. Here, we demonstrate the detection of metabolic pathways based on correlation-based network analysis combined with machine-learning techniques. Metabolites of known tomato pathways, non-tomato pathways, and random sets of metabolites were mapped as subgraphs onto metabolite correlation networks of the tomato pericarp. Network features were computed for each subgraph, generating a machine-learning model. The model predicted the presence of the ß-alanine-degradation-I, tryptophan-degradation-VII-via-indole-3-pyruvate (yet unknown to plants), the ß-alanine-biosynthesis-III, and the melibiose-degradation pathway, although melibiose was not part of the networks. In vivo assays validated the presence of the melibiose-degradation pathway. For the remaining pathways only some of the genes encoding regulatory enzymes were detected.


Assuntos
Aprendizado de Máquina , Metabolômica/métodos , Solanum lycopersicum/metabolismo , Redes e Vias Metabólicas
19.
BMC Plant Biol ; 19(1): 69, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744556

RESUMO

BACKGROUND: Grape leaves provide the biochemical substrates for berry development. Thus, understanding the regulation of grapevine leaf metabolism can aid in discerning processes fundamental to fruit development and berry quality. Here, the temporal alterations in leaf metabolism in Merlot grapevine grown under sufficient irrigation and water deficit were monitored from veraison until harvest. RESULTS: The vines mediated water stress gradually and involving multiple strategies: osmotic adjustment, transcript-metabolite alteration and leaf shedding. Initially stomatal conductance and leaf water potential showed a steep decrease together with the induction of stress related metabolism, e.g. up-regulation of proline and GABA metabolism and stress related sugars, and the down-regulation of developmental processes. Later, progressive soil drying was associated with an incremental contribution of Ca2+ and sucrose to the osmotic adjustment concomitant with the initiation of leaf shedding. Last, towards harvest under progressive stress conditions following leaf shedding, incremental changes in leaf water potential were measured, while the magnitude of perturbation in leaf metabolism lessened. CONCLUSIONS: The data present evidence that over time grapevine acclimation to water stress diversifies in temporal responses encompassing the alteration of central metabolism and gene expression, osmotic adjustments and reduction in leaf area. Together these processes mitigate leaf water stress and aid in maintaining the berry-ripening program.


Assuntos
Folhas de Planta/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Osmose , Prolina/metabolismo , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
Plant Cell Environ ; 42(6): 1897-1912, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30673142

RESUMO

Solar irradiance and air temperature are characterized by dramatic circadian fluctuations and are known to significantly modulate fruit composition. To date, it remains unclear whether the abrupt, yet predictive, diurnal changes in radiation and temperature prompt direct metabolic turn-over in the fruit. We assessed the role of fruit insolation, air temperature, and source-tissue CO2 assimilation in the diurnal compositional changes in ripening grape berries. This was performed by comparing the diurnal changes in metabolite profiles of berries positioned such that they experienced (a) contrasting diurnal solar irradiance patterns, and (b) similar irradiance but contrasting diurnal CO2 assimilation patterns of adjacent leaves. Grape carbon levels increased during the morning and decreased thereafter. Sucrose levels decreased throughout the day and were correlated with air temperature, but not with the diurnal pattern of leaf CO2 assimilation. Tight correlation between sucrose and glucose-6-phosphate indicated the involvement of photorespiration/glycolysis in sucrose depletion. Amino acids, polyamines, and phenylpropanoids fluctuated diurnally, and were highly responsive to the diurnal insolation pattern of the fruit. Our results fill the knowledge gap regarding the circadian pattern of source-sink assimilate-translocation in grapevine. In addition, they suggest that short-term direct solar exposure of the fruit impacts both its diurnal and nocturnal metabolism.


Assuntos
Frutas/anatomia & histologia , Frutas/metabolismo , Metaboloma , Vitis/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Dióxido de Carbono , Israel , Folhas de Planta/metabolismo , Sacarose/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...