Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 17(49): 13892-7, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22052708

RESUMO

The crystal structures of three MgCl(2)·nEtOH complexes with n=1.5, 2.8, and 3.3 have been fully determined. Such complexes are the fundamental precursors for Ziegler-Natta polymerization catalysts used to produce polyolefins on a multimillion-ton scale worldwide. The ab initio structure solution showed that the structure of MgCl(2)·nEtOH complexes with n=1.5 and 2.8 are based on ribbons of metal-centered octahedra, whereas for n=3.3 this chainlike arrangement breaks into a threadlike structure of isolated octahedra linked by hydrogen bonds. A clear correlation between catalyst performance and the crystal structure of precursors has been found, and reveals the fundamental role of the latter in determining catalyst properties. The direct knowledge of building blocks in the precursor structures will help to develop more accurate models for activated catalysts. These models will not require the arbitrary and oversimplified assumption of locating the catalyst active sites on selected cut surfaces of the α-MgCl(2) crystal lattice.

2.
J Am Chem Soc ; 125(36): 10913-20, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12952472

RESUMO

Heterocycle-fused titanium indenyl silylamido dimethyl complexes produce very high molecular weight polypropylene having a prevailingly syndiotactic microstructure with syndiotactic pentad contents rrrr up to 40-55% (sam-PP). The samples are basically amorphous and may slowly develop a low level of crystallinity (16-20%) at room temperature. A structural characterization has shown that sam-PP samples crystallize in disordered modifications of the helical form I of syndiotactic polypropylene (s-PP). The stretching of compression-molded films of sam-PP samples produce oriented crystalline fibers in the trans-planar mesomorphic form of s-PP. The low stereoregularity prevents the formation of the ordered trans-planar form III of s-PP, which instead is obtained in stretched fibers of the highly stereoregular and crystalline s-PP. The trans-planar mesomorphic form, obtained in stretched fibers, in turn transforms into the helical form I upon releasing the tension. The analysis of the mechanical properties has shown that sam-PP samples show good elastic behavior in a large range of deformation with remarkable strength, due to the presence of crystallinity. A comparison with the mechanical properties of less syndiotactic and fully amorphous samples is reported. These fully amorphous samples present lower strength and experience rapid viscous flow of the chains at high deformations and/or by application of stresses for long times. The higher strength in the semicrystalline sam-PP samples makes these materials interesting thermoplastic elastomers showing high toughness and ductility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...