Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 301, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990438

RESUMO

The attendant effects of urbanization on the environment and human health are evaluable by measuring the potentially harmful element (PHE) concentrations in environmental media such as stream sediments. To evaluate the effect of urbanization in Osogbo Metropolis, the quality of stream sediments from a densely-populated area with commercial/industrial activities was contrasted with sediments from a sparsely-populated area with minimal anthropogenic input.Forty samples were obtained: 29 from Okoko stream draining a Residential/Commercial Area (RCA, n = 14) and an Industrial Area (IA, n = 15), and 11 from Omu stream draining a sparsely-populated area (SPA). The samples were air-dried, sieved to < 75 micron fraction, and analysed for PHEs using inductively-coupled plasma atomic emission spectrometry (ICP-AES). Index of geoaccumulation (Igeo), pollution index (PI), ecological risk factor (Er) and index (ERI) were used for assessment. Inter-elemental relationships and source identification were done using Pearson's correlation matrix and principal component analysis (PCA).PHE concentrations in the stream sediments were RCA: Zn > Pb > Cu > Cr > Sr > Ni > Co, IA: Zn > Cr > Ni > Co > Pb > Cu > Sr and SPA: Zn > Co > Cr > Cu > Sr > Ni > Pb. Igeo calculations revealed moderate-heavy contamination of Cu, Pb and Zn in parts of RCA, moderate-heavy contamination of Zn in IA while SPA had moderate contamination of Co and Zn. PI values revealed that stream sediments of RCA are extremely polluted, while those of IA and SPA are moderately and slightly polluted, respectively.The pollution of the stream sediments in RCA and IA is adduced to anthropogenic activities like vehicular traffic, automobile repairs/painting, blacksmithing/welding and metal scraping. In SPA however, the contamination resulted from the application of herbicides/fertilizers for agricultural purposes.


Assuntos
Sedimentos Geológicos , Rios , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Nigéria , Rios/química , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes Químicos da Água/análise , Urbanização , Análise de Componente Principal , Cidades , Espectrofotometria Atômica
2.
Mar Pollut Bull ; 185(Pt B): 114359, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435017

RESUMO

The Apapa and Badagry creeks in Nigeria are a corridor of long-term anthropogenic activities, including mangrove removal, urban expansion, and industrialization. Consequently, this uncontrolled development led to the release of untreated effluents and wastes, which resulted in sediment and water quality degradation. This area has the highest degree of pollution (Enrichment and Contamination Factors) especially north of Tincan Island where potentially toxic element (PTE) depocenters occur. Our data shows that salinity and pH are the two main factors favoring foraminiferal distributions, but the sediments in the depocenters with the highest degree of PTE pollution are barren of foraminifera. Bioavailable sediment-bound PTEs have been found to negatively impact the assemblage distribution and diversity. It is important to highlight that dissolved phosphorous was the only PTE that negatively impacted species richness. This study highlights the significance of implementing PTE bioavailability as an integral part of ecosystem functioning in all nearshore environments.


Assuntos
Foraminíferos , Nigéria , Ecossistema , Qualidade da Água
3.
PLoS One ; 15(12): e0243481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33284843

RESUMO

Lagos Lagoon is among Africa's largest estuarine ecosystems, bordered by one of the fastest growing megacities in the world and the ultimate repository of contaminants carried in industrial, municipal and agricultural wastes. The high levels of pollutants have progressively deteriorated the water quality, adversely affected lagoon ecosystems, impacted the livelihood of the coastal population and pose serious risks to human health. Benthic foraminifera are excellent proxies and sensitive bioindicators of environmental disturbances but comprehensive studies on the structure, distribution, diversity and impact of pollution upon foraminiferal communities have not yet been conducted in the Lagos Lagoon. To demonstrate the potential of foraminifera as proxies of environmental perturbations, benthic foraminifera were investigated on a lagoon-wide basis. Lagos Lagoon comprises areas that range from low levels of direct impact to those of severely affected by various forms of anthropogenic disturbance. The goals of this study are to analyze patterns of distribution and species richness, to document foraminiferal community structures, and to identify taxa that track documented records of pollution in Lagos Lagoon sediments. Heat maps were generated from abundance records for selected species to illustrate environmental preferences and relative resistance levels to individual forms of anthropogenic disturbance. Sediments were analyzed for a range of physicochemical properties, via a multi-parameter sensor probe-device, including temperature, pH, depth and total dissolved solids (TDS). Quantitative analysis of 24 sediment samples yielded a total 3872 individuals of benthic foraminifera that belong to 42 species and 25 genera. They comprise 10 porcellaneous, 22 hyaline perforate and 10 agglutinated species. Ammobaculites exiguus, Ammotium salsum, Ammonia aoteana, Ammonia convexa and Trochammina sp. 1 have been found to be the most abundant species. For the first time, the complete present-day foraminifera fauna is illustrated here via scanning electron microscopy. The features recorded allow to assess the spatial effects of pollution upon foraminiferal assemblages on a lagoon-wide basis. The data generated may ultimately form the basis to assess the progressive deterioration of Lagos Lagoon ecosystems from cores by using benthic foraminifera as bioindicators of environmental perturbation.


Assuntos
Monitoramento Ambiental , Foraminíferos/crescimento & desenvolvimento , Água Doce/parasitologia , Sedimentos Geológicos/parasitologia , Análise por Conglomerados , Ecossistema , Foraminíferos/isolamento & purificação , Água Doce/análise , Água Doce/microbiologia , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Nigéria , Análise de Componente Principal , Análise Espacial , Temperatura
4.
J Health Pollut ; 8(19): 180906, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30524865

RESUMO

BACKGROUND: Increased growth of industrial activities, especially in urban centers, is one of the main sources of toxic substances in Nigeria. The level of these impacts is not well known. Soil and sediment samples from one such industrial area were examined for their mineralogical composition and heavy metals contents in order to assess the level of contamination and potential ecological risk status. METHODS: Mineralogical composition of the media and their heavy metals concentrations were determined using X-ray diffractometry and inductively coupled plasma-mass spectrometry methods, respectively. Ecological risk assessment was carried out using single (contamination factor, geo-accumulation index, enrichment factor) and multi-elemental (contamination degree, pollution index and modified pollution index) standard indices. RESULTS: The average heavy metal concentrations in soils and sediments followed the order magnesium (Mn) > chromium (Cr) > lead (Pb) > copper (Cu) > cadmium (Cd) > cobalt (Co) > nickel (Ni), with corresponding values for soils and sediments of 324.3, 79.9, 66.1, 40.7, 14.3, 9.1, 6.8 mg kg-1 and 266.8, 78.6, 40.6, 39.8, 12.9, 8.4, 4.6 mg kg-1, respectively. Principal component (PC) analysis of the results indicated three main sources of metals (industrial, vehicular activities and geogenic input). Evaluated contamination factor (Cf), enrichment factor (Ef) and geo-accumulation index (Igeo) revealed very high contamination for Pb, Cd and Cu in all of the samples, with calculated pollution index (PI) and modified pollution index (MPI) revealing that all the samples were severely polluted. Calculated potential ecological risk factor (ERi) within the industrial area demonstrated a strong potential ecological risk for Cd, Pb and Cu. CONCLUSIONS: Activities in the industrial area have affected the quality of the analyzed environmental media, with possible detrimental health consequences. Regular environmental monitoring of the industrial area and the formulation of appropriate policies that support reduction of contamination are strongly recommended. However, due to the limitations of comparing site samples with a single control sample in this work, further study is recommended to compliment this preliminary study. COMPETING INTERESTS: The authors declare no competing financial interests.

5.
PLoS One ; 10(12): e0145752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26710320

RESUMO

Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs is consistent with the disturbance-mosaic (microhabitat heterogeneity) hypothesis. Calculations of the FORAM Index (FI), a single metric index to assess reef vitality, indicate that all fore- and most back-reef environments support active carbonate accretion and provide habitat suitability for carbonate producers dependent on algal symbiosis. Lowest suitability values were recorded within the innermost bays, an area where natural and increasing anthropogenic influences continue to impact the reefs. The presence of habitat specific assemblages and numerical abundance values of individual taxa show that benthic foraminifera are excellent recorders of environmental perturbations and good indicators useful in modern and ancient ecological and environmental studies.


Assuntos
Foraminíferos/classificação , Foraminíferos/isolamento & purificação , Baías , Biodiversidade , Recifes de Corais , Ecossistema , Foraminíferos/ultraestrutura , Microscopia Eletrônica de Varredura , Polinésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...