Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39065758

RESUMO

Silver oxide (Ag2O) particles are wonderful candidates due to their unique properties, and their use in a wide range of research, industrial and biomedical applications is rapidly increasing. This makes it fundamental to develop simple, environmentally friendly methods with possible scaling. Herein, sodium borohydride and Datura innoxia leaf extract were applied as chemical and biological stabilizing and reducing agents to develop Ag2O particles. The primary aim was to evaluate the anticancer and antiviral activity of Ag2O particles prepared via two methods. XRD, UV-visible and SEM analyses were used to examine the crystallite structure, optical properties and morphology, respectively. The resulting green-synthesized Ag2O particles exhibited small size, spherically agglomerated shape, and high anticancer and antiviral activities compared to chemically synthesized Ag2O particles. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium-bromide) assay of green-synthesized Ag2O particles showed high anticancer activity against MCF-7 cells with IC50 = 17.908 µg/mL compared to chemically synthesized Ag2O particles with IC50 = 23.856 µg/mL. The antiviral activity of green-synthesized Ag2O particles and chemically synthesized Ag2O particles was also evaluated by a plaque-forming assay, and green-synthesized Ag2O particles showed higher antiviral ability with IC50 = 0.618 µg/mL as compared to chemically synthesized Ag2O particles with IC50 = 6.129 µg/mL. We propose the use of green-synthesized Ag2O particles in cancer treatment and drug delivery.

2.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731542

RESUMO

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Assuntos
Materiais Biocompatíveis , Proliferação de Células , Poliésteres , Pele , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Poliésteres/química , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Alicerces Teciduais/química , Resistência à Tração , Membranas Artificiais , Linhagem Celular , Teste de Materiais , Polímeros/química , Adesão Celular/efeitos dos fármacos
3.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894641

RESUMO

In this study, ceria nanoparticles (NPs) and deep eutectic solvent (DES) were synthesized, and the ceria-NP's surfaces were modified by DES to form DES-ceria NP filler to develop mixed matrix membranes (MMMs). For the sake of interface engineering, MMMs of 2%, 4%, 6% and 8% filler loadings were fabricated using solution casting technique. The characterizations of SEM, FTIR and TGA of synthesized membranes were performed. SEM represented the surface and cross-sectional morphology of membranes, which indicated that the filler is uniformly dispersed in the polysulfone. FTIR was used to analyze the interaction between the filler and support, which showed there was no reaction between the polymer and DES-ceria NPs as all the peaks were consistent, and TGA provided the variation in the membrane materials with respect to temperature, which categorized all of the membranes as very stable and showed that the trend of stability increases with respect to DES-ceria NPs filler loading. For the evaluation of efficiency of the MMMs, the gas permeation was tested. The permeability of CO2 was improved in comparison with the pristine Polysulfone (PSF) membrane and enhanced selectivities of 35.43 (αCO2/CH4) and 39.3 (αCO2/N2) were found. Hence, the DES-ceria NP-based MMMs proved useful in mitigating CO2 from a gaseous mixture.

6.
Saudi J Biol Sci ; 28(12): 7561-7566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867060

RESUMO

The modulation of antimicrobial properties of nanomaterials can be achieved through various physical and chemical processes, which ultimately affect subsequent properties. In this study, the antibacterial potential of nano-silver was investigated at 0.5, 1.0, 2.0, and 3.0 g/L, and its differential temperature synthesis was achieved at 20, 50, and 70 °C using the solvent evaporation method. Nano-silver particles exhibited FCC (octahedral) crystalline structure with crystallite sizes ranging between 28 and 39 nm calculated using XRD analysis. Moreover, irregular and non-uniform surface morphology was evident from SEM micrographs. The UV-Vis absorbance spectrum of nano-silver exhibited wave maxima at 433 nm, while the FTIR analysis depicted different modes of vibration indicating the CH, OH, C≡C, C-Cl, and CH2 functional groups attached to the surface. Lastly, nano-silver caused prominent inhibition (12.5 mm) in the Escherichia coli growth, particularly at 70 °C synthesis temperature and 3.0 g/L dose. It is concluded that both the nano-silver crystal growth temperature and dose contributed substantially to bacterial growth inhibition linked with subsequent size, shape-dependent properties.

8.
Micromachines (Basel) ; 10(1)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658388

RESUMO

The current study is based on Zn/ZnO nanoparticles photodynamic therapy (PDT) mediated effects on healthy liver cells and cancerous cells. The synthesis of Zn/ZnO nanoparticles was accomplished using chemical and hydrothermal methods. The characterization of the synthesized nanoparticles was carried out using manifold techniques (e.g., transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS)). In order to study the biotoxicity of the grown nanoparticles, they were applied individually and in conjunction with the third generation photosensitiser Fotolon (Chlorine e6) in the in vivo model of the normal liver of the Wister rat, and in the in vitro cancerous liver (HepG2) model both in the dark and under a variety of laser exposures (630 nm, Ultraviolet (UV) light). The localization of ZnO nanoparticles was observed by applying fluorescence spectroscopy on a 1 cm² selected area of normal liver, whereas the in vitro cytotoxicity and reactive oxygen species (ROS) detection were carried out by calculating the loss in the cell viability of the hepatocellular model by applying a neutral red assay (NRA). Furthermore, a statistical analysis is carried out and it is ensured that the p value is less than 0.05. Thus, the current study has highlighted the potential for applying Zn/ZnO nanoparticles in photodynamic therapy that would lead to wider medical applications to improve the efficiency of cancer treatment and its biological aspect study.

9.
Sci Rep ; 8(1): 4576, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545644

RESUMO

MgO is an attractive choice for carcinogenic cell destruction in photodynamic therapy, as confirmed by manifold analysis. The prime focus of the presented research is to investigate the toxicity caused by morphologically different MgO nanostructures obtained by annealing at various annealing temperatures. Smart (stimuli-responsive) MgO nanomaterials are a very promising class of nanomaterials, and their properties can be controlled by altering their size, morphology, or other relevant characteristics. The samples investigated here were grown by the co-precipitation technique. Toxicity-dependent parameters were assessed in a HeLa cell model after annealing the grown samples at 350 °C, 450 °C, and 550 °C. After the overall characterization, an analysis of toxicity caused by changes in the MgO nanostructure morphology was tested in a HeLa cell model using a neutral red assay and microscopy. The feasibility of using MgO for PDT was assessed. Empirical modelling was applied to corroborate the experimental results obtained from assessing cell viability losses and reactive oxygen species. The results indicate that MgO is an excellent candidate material for medical applications and could be utilized for its potential ability to upgrade conventionally used techniques.


Assuntos
Óxido de Magnésio/química , Nanoestruturas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Modelos Teóricos , Nanoestruturas/química , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo
10.
Front Biosci (Elite Ed) ; 10(2): 352-374, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293463

RESUMO

The discovery of antibiotics was hailed as a historic breakthrough for the human race in the fight against bacterial and malignant infections. However, in a very short time, owing to their acute and aggressive nature, bacteria have developed resistance against antibiotics and other chemotherapeutics agents. Potentially, this situation could again result in bacterial infection outbreaks. Metal and metal oxide nanoparticles have been proven as better alternatives; the combination of antibiotics and metal oxide nanoparticles was shown to decrease the toxicity and enhance the antibacterial, antiviral, and anticancer efficacy of the agents. This review provides a detailed view about the role of metal and metal oxide nanoparticles in the treatment of infections in conjunction with antibiotics, their modes of action, and synergism. In addition, the problems of multidrug resistance are addressed and will allow the development of a comprehensive, reliable, and rational treatment plan. It is expected that this comprehensive review will lead to new research opportunities, which should be helpful for future applications in biomedical science.


Assuntos
Anticorpos/administração & dosagem , Farmacorresistência Bacteriana Múltipla , Nanopartículas Metálicas/administração & dosagem , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos
11.
Nanomaterials (Basel) ; 7(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160836

RESUMO

Graphene-based materials have garnered significant attention because of their versatile bioapplications and extraordinary properties. Graphene oxide (GO) is an extremely oxidized form of graphene accompanied by the functional groups of oxygen on its surface. GO is an outstanding platform on which to pacify silver nanoparticles (Ag NPs), which gives rise to the graphene oxide-silver nanoparticle (GO-Ag) nanocomposite. In this experimental study, the toxicity of graphene oxide-silver (GO-Ag) nanocomposites was assessed in an in vitro human breast cancer model to optimize the parameters of photodynamic therapy. GO-Ag was prepared using the hydrothermal method, and characterization was done by X-ray diffraction, field-emission scanning electron microscope (FE-SEM), transmission Electron Microscopy (TEM), energy dispersive X-rays Analysis (EDAX), atomic force microscopy and ultraviolet-visible spectroscopy. The experiments were done both with laser exposure, as well as in darkness, to examine the phototoxicity and cytotoxicity of the nanocomposites. The cytotoxicity of the GO-Ag was confirmed via a methyl-thiazole-tetrazolium (MTT) assay and intracellular reactive oxygen species production analysis. The phototoxic effect explored the dose-dependent decrease in the cell viability, as well as provoked cell death via apoptosis. An enormously significant escalation of ¹O2 in the samples when exposed to daylight was perceived. Statistical analysis was performed on the experimental results to confirm the worth and clarity of the results, with p-values < 0.05 selected as significant. These outcomes suggest that GO-Ag nanocomposites could serve as potential candidates for targeted breast cancer therapy.

12.
Sci Rep ; 7: 46603, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436451

RESUMO

Carcinogenesis is a complex molecular process starting with genetic and epigenetic alterations, mutation stimulation, and DNA modification, which leads to proteomic adaptation ending with an uncontrolled proliferation mechanism. The current research focused on the empirical modelling of the physiological response of human melanoma cells (FM55P) and human foreskin fibroblasts cells (AG01518) to the multilayer zinc oxide (ZnO) nanomaterials under UV-A exposure. To validate this experimental scheme, multilayer ZnO nanomaterials were grown on a femtotip silver capillary and conjugated with protoporphyrin IX (PpIX). Furthermore, PpIX-conjugated ZnO nanomaterials grown on the probe were inserted into human melanoma (FM55P) and foreskin fibroblasts cells (AG01518) under UV-A light exposure. Interestingly, significant cell necrosis was observed because of a loss in mitochondrial membrane potential just after insertion of the femtotip tool. Intense reactive oxygen species (ROS) fluorescence was observed after exposure to the ZnO NWs conjugated with PpIX femtotip model under UV exposure. Results were verified by applying several experimental techniques, e.g., ROS detection, MTT assay, and fluorescence spectroscopy. The present work reports experimental modelling of cell necrosis in normal human skin as well as a cancerous tissue. These obtained results pave the way for a more rational strategy for biomedical and clinical applications.


Assuntos
Fibroblastos/metabolismo , Melanoma , Potencial da Membrana Mitocondrial , Nanopartículas , Raios Ultravioleta , Óxido de Zinco , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fibroblastos/patologia , Prepúcio do Pênis , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Melanoma/terapia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Nanopartículas/química , Nanopartículas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/química , Óxido de Zinco/farmacologia
13.
Biol Trace Elem Res ; 176(2): 416-428, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27587025

RESUMO

The physicochemical and biological properties of metals change as the particles are reduced to nanoscale. This ability increases the application of nanoparticles in commercial and medical industry. Keeping in view this importance, Silver nanoparticles (Ag-NPs) were synthesized by reduction methods using formaldehyde as reducing agent in the chemical route and lemon extracts in the biological route. The scanning electron microscope (SEM) images of nanoparticles suggested that the particles were either agglomerated or spherical in shape with mean diameter of 16.59 nm in the chemical route and 42.93 nm in the biological route. The particles were between 5 and 80 nm with maximum frequency between 5 and 20 nm in the chemical route and between 5 and 100 nm with maximum frequency between 15 and 50 nm in the biological method. In the second phase of the study, the effect of Ag-NPs on the oxidative stress was studied. For this purpose, Labeo rohita (20 ± 2.5 g in weight and 12 ± 1.4 cm in length) were involved. Six treatments were applied in three replicates having five fishes in each replicate. The first treatment was used as control group, and the other five treatments were exposed to either 10 or 20 or 30 or 45 or 55 mg L-1 of Ag-NPs for 28 days. The treatment of Ag-NPs caused oxidative stress in the liver and gill tissues, which induced alterations in the activities of antioxidant enzymes. The level of catalase (CAT) was decreased in response to Ag-NPs concentration in dose-dependent manner. Ag-NPs treatment stimulated the liver and gill tissues to significantly increase the level of superoxide dismutase (SOD), which might be due to synthesis of SOD and addition in the pre-existing SOD level. The level decreases again due to depletion of SOD level. There was a sharp decline in the activities of glutathione S-transferase (GST) in both gills and liver tissues even at lower concentration, and this decrease in the GST activity was significantly different at each treatment after 28 days of treatment except 20 mg L-1. The malondialdehyde (MDA) levels of gills and liver tissues were increased with the increase in the concentration. The elevated levels of glutathione (GSH) showed that the liver started defensive mechanism against the oxyradicals. This study finds out the cheap eco-friendly and economical method of Ag-NP synthesis. It is further revealed that Ag-NPs caused oxidative stress in the aquatic animals if exposure occurs at high concentrations.


Assuntos
Cyprinidae/metabolismo , Nanopartículas Metálicas/economia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/economia , Prata/toxicidade , Animais , Relação Dose-Resposta a Droga , Formaldeído/química , Brânquias/química , Brânquias/efeitos dos fármacos , Glutationa/análise , Fígado/química , Fígado/efeitos dos fármacos , Malondialdeído/análise , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Propriedades de Superfície
14.
Nanoscale Res Lett ; 11(1): 164, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27009531

RESUMO

This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

15.
Lasers Med Sci ; 29(3): 1189-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24338134

RESUMO

Cytotoxic effects of zinc oxide (ZnO) nanomaterials, individual and conjugated with a photosensitizer (protoporphyrin IX), were studied in the presence and absence of ultraviolet light exposure (240 nm of light wavelength for a very short time exposure) in cell cultures of human normal and cancerous skin models. Zinc Oxide nanowires (ZnO NWs) were grown on the capillary tip and conjugated with protoporphyrin IX (PpIX). This coated tip was used as tool/pointer for intracellular drug delivery protocol in suggested normal as well as carcinogenic cellular models. After true delivery of optimal drug, the labelled biological model was irradiated with UV-A, which led to a loss of mitochondrial membrane potential, as tested by neutral red assay (NRA).


Assuntos
Fibroblastos/efeitos dos fármacos , Nanofios/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Óxido de Zinco/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Sistemas de Liberação de Medicamentos , Fibroblastos/efeitos da radiação , Humanos , Masculino , Melanoma/tratamento farmacológico , Nanofios/ultraestrutura , Protoporfirinas/uso terapêutico , Raios Ultravioleta
16.
Lasers Med Sci ; 27(3): 607-14, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21960120

RESUMO

In the present study, we demonstrated the use of nanoporous zinc oxide (ZnO NPs) in photodynamic therapy. The ZnO NPs structure possesses a high surface to volume ratio due to its porosity and ZnO NPs can be used as an efficient photosensitizer carrier system. We were able to grow ZnO NPs on the tip of borosilicate glass capillaries (0.5 µm diameter) and conjugated this with Photofrin for efficient intracellular drug delivery. The ZnO NPs on the capillary tip could be excited intracellularly with 240 nm UV light, and the resultant 625 nm red light emitted in the presence of Photofrin activated a chemical reaction that produced reactive oxygen species (ROS). The procedure was tested in A-549 cells and led to cell death within a few minutes. The morphological changes in necrosed cells were examined by microscopy. The viability of control and treated A-549 cells with the optimum dose of UV/visible light was assessed using the MTT assay, and ROS were detected using a fluorescence microscopy procedure.


Assuntos
Éter de Diematoporfirina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Lasers Semicondutores/uso terapêutico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanoconjugados/uso terapêutico , Nanoconjugados/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...