Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409108

RESUMO

Preeclampsia (PE) involves inadequate placental function. This can occur due to elevated pro-inflammatory tumor necrosis factor-α (TNF-α). In other tissues, TNF-α signals via sphingosine kinase 1 (SphK1). SphK1 hinders syncytial formation. Whether this occurs downstream of TNF-α signaling is unclear. We hypothesized that placental SphK1 levels are higher in PE and elevated TNF-α decreases syncytial function, increases syncytial shedding, and increases cytokine/factor release via SphK1 activity. Term placental biopsies were analyzed for SphK1 using immunofluorescence and qRT-PCR. Term placental explants were treated after 4 days of culture, at the start of syncytial regeneration, with TNF-α and/or SphK1 inhibitors, PF-543. Syncytialization was assessed by measuring fusion and chorionic gonadotropin release. Cell death and shedding were measured by lactate dehydrogenase release and placental alkaline phosphatase-positive shed particles. Forty-two cytokines were measured using multiplex assays. Placental SphK1 was increased in PE. Increased cell death, shedding, interferon-α2, IFN-γ-induced protein 10, fibroblast growth factor 2, and platelet-derived growth factor-AA release induced by TNF-α were reversed upon SphK1 inhibition. TNF-α increased the release of 26 cytokines independently of SphK1. TNF-α decreased IL-10 release and inhibiting SphK1 reversed this effect. Inhibiting SphK1 alone decreased TNF-α release. Hence, SphK1 partially mediates the TNF-α-induced PE placental phenotype, primarily through cell damage, shedding, and specific cytokine release.


Assuntos
Pré-Eclâmpsia , Fator de Necrose Tumoral alfa , Vilosidades Coriônicas/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Placenta/metabolismo , Gravidez , Esfingosina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Cell Signal ; 85: 110041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991614

RESUMO

Signaling by the bioactive sphingolipid, sphingosine 1-phosphate (S1P), and its precursors are emerging areas in pregnancy research. S1P and ceramide levels increase towards end of gestation, suggesting a physiological role in parturition. However, high levels of circulating S1P and ceramide are correlated with pregnancy disorders such as preeclampsia, gestational diabetes mellitus and intrauterine growth restriction. Expression of placental and decidual enzymes that metabolize S1P and S1P receptors are also dysregulated during pregnancy complications. In this review, we provide an in-depth examination of the signaling mechanism of S1P and ceramide in various reproductive tissues during gestation. These factors determine implantation and early pregnancy success by modulating corpus luteum function from progesterone production to luteolysis through to apoptosis. We also highlight the role of S1P through receptor signaling in inducing decidualization and angiogenesis in the decidua, as well as regulating extravillous trophoblast migration to anchor the placenta into the uterine wall. Recent advances on the role of the S1P:ceramide rheostat in controlling the fate of villous trophoblasts and the role of S1P as a negative regulator of trophoblast syncytialization to a multinucleated placental barrier are discussed. This review also explores the role of S1P in anti-inflammatory and pro-inflammatory signaling, its role as a vasoconstrictor, and the effects of S1P metabolizing enzymes and receptors in pregnancy.


Assuntos
Placenta , Esfingolipídeos , Ceramidas , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Placenta/metabolismo , Gravidez , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...