Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22848, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354110

RESUMO

In contemporary floriculture, particularly within the cut flower industry, there is a burgeoning interest in innovative methodologies aimed at enhancing the aesthetic appeal and prolonging the postharvest longevity of floral specimens. Within this context, the application of nanotechnology, specifically the utilization of silicon and selenium nanoparticles, has emerged as a promising approach for augmenting the qualitative attributes and extending the vase life of cut roses. This study evaluated the impact of silicon dioxide (SiO2-NPs) and selenium nanoparticles (Se-NPs) in preservative solutions on the physio-chemical properties of 'Black Magic' roses. Preservative solutions were formulated with varying concentrations of SiO2-NPs (25 and 50 mg L-1) and Se-NPs (10 and 20 mg L-1), supplemented with a continuous treatment of 3% sucrose. Roses treated with 20 mg L-1 Se-NPs exhibited the lowest relative water loss, highest solution uptake, maximum photochemical performance of PSII (Fv/Fm), and elevated antioxidative enzyme activities. The upward trajectory of hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels in petals was mitigated by different levels of SiO2 and Se-NPs, with the lowest H2O2 and MDA observed in preservatives containing 50 mg L-1 SiO2- and 20 mg L-1 Se-NPs at the 15th day, surpassing controls and other treatments. Extended vase life and a substantial enhancement in antioxidative capacity were noted under Se and Si nanoparticles in preservatives. The levels of total phenols, flavonoids, and anthocyanin increased during the vase period, particularly in the 50 and 20 mg L-1 Se-NPs and SiO2-NPs. Petal carbohydrate exhibited a declining trend throughout the longevity, with reductions of 8% and 66% observed in 20 mg L-1 Se-NPs and controls, respectively. The longest vase life was achieved with Se-NPs (20 mg L-1), followed by SiO2-NPs (50 mg L-1) up to 16.6 and 15th days, respectively. These findings highlight the significant potential of SiO2- and Se-NPs in enhancing the vase life and physiological qualities of 'Black Magic' roses, with SiO2-NPs showing broad-spectrum efficacy.


Assuntos
Flores , Nanopartículas , Rosa , Selênio , Dióxido de Silício , Selênio/química , Selênio/farmacologia , Dióxido de Silício/química , Nanopartículas/química , Rosa/química , Flores/química , Antioxidantes/química , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo
2.
BMC Plant Biol ; 24(1): 121, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373932

RESUMO

BACKGROUND: The primary challenge in the cut flower industry, specifically in the postharvest phase, is the short vase life of flowers. This issue, along with early leaf yellowing and perianth abscission, significantly diminishes the economic value of flowers due to their accelerated senescence. To tackle this, we conducted a factorial experiment on Alstroemeria cv. Rebecca, utilizing a completely randomized design with three replications. In this experiment the effects of varying concentrations of Salicylic acid (SA) (0, 1.5, and 3 mM) and sucrose (SU) (0% and 3%) were investigated on the postharvest quality of leaves and florets, with systematic evaluations every three days throughout their vase life. RESULTS: This experiment revealed that the specific treatment combination of 1.5 mM SA + 3% SU (T5) markedly improved various parameters, such as vase life, total chlorophyll content, membrane stability index, relative fresh weight, and water uptake of cut flowers. In our analysis, we observed that this preservative solution not only extended the vase life and enhanced water uptake but also effectively preserved total chlorophyll, mitigated the loss of fresh weight, and reduced membrane deterioration in petals. Additionally, our results showed an increase in the activities of catalase (CAT) and peroxidase (POD) enzymes, as well as total protein content, alongside a decrease in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels. Moreover, this study noted a decrease in microbial populations in solutions containing different concentrations of salicylic acid. CONCLUSIONS: Our research demonstrated that alstroemeria flowers maintained in a solution with 1.5 mM SA + 3% SU exhibited a significantly prolonged vase life of up to 21 days, in contrast to the 15 days observed in control flowers kept in water. These results are highly beneficial for manufacturers in the cut flower industry, as they provide a viable method to substantially extend the vase life of cut flowers. Such an enhancement in flower longevity can lead to increased market value and customer satisfaction. Furthermore, the reduction in flower senescence and decay rates can contribute to decreased waste and greater efficiency in cut flower distribution and sales, offering a substantial advantage to manufacturers in this competitive market. The extended vase life and reduced senescence observed in alstroemeria flowers treated with 1.5 mM SA and 3% SU are attributed to SA's role in enhancing endogenous defense responses and sucrose's function as an energy source, collectively improving water uptake, and delaying the natural decay process.


Assuntos
Alstroemeria , Alstroemeria/metabolismo , Sacarose/farmacologia , Ácido Salicílico/farmacologia , Peróxido de Hidrogênio/farmacologia , Flores/metabolismo , Água/metabolismo , Clorofila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA