Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 34: 13-27, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024178

RESUMO

Introduction: Biochar utilization for adsorption seems to be the most cost-effective, easy/fast approach for pollutants removal from water and wastewater. Due to the high adsorption properties, magnetic biochar proved to be efficient in the sorption of heavy metals and nutrients. Although there are several studies on development of magnetic biochars, there is a lack of research on development of high-performance magnetic biochar from food waste for removal applications. Objectives: This study aimed at preparing new classes of magnetic biochar derived from tea waste (TBC) for removal of heavy metals (Ni2+, Co2+), and nutrients (NH4+ and PO43-) from water and effective fertilizer (source of NH4+ and PO43-). Methods: Standard carbonization process and ultrafast microwave have been used for fabrication of TBCs. The removal of nickel, cobalt as the representatives of heavy metals, and over-enriched nutrients (NH4+ and PO43-) from water were tested and the removal kinetics, mechanism, and the effect of pH, dissolved organic matter and ionic strength were studied. Simultaneously, possible fertilizing effect of TBC for controlled release of nutrients (NH4+ and PO43-) in soil was investigated. Results: Up to 147.84 mg g-1 of Ni2+ and 160.00 mg g-1 of Co2+ were adsorbed onto tested biochars. The process of co-adsorption was also efficient (at least 131.68 mg g-1 of Co2+ and 160.00 mg g-1 of Ni2+). The highest adsorbed amount of NH4+ was 49.43 mg g-1, and the highest amount of PO43- was 112.61 mg g-1. The increase of the solution ionic strength and the presence of natural organic matter affected both the amount of adsorbed Ni2++Co2+ and the reaction mechanism. Conclusions: The results revealed that magnetic nanoparticle impregnated onto tea biochar, can be a very promising alternative for wastewater treatment especially considering removal of heavy metals and nutrients and slow-release fertilizer to improve the composition of soil elements.


Assuntos
Carvão Vegetal , Eliminação de Resíduos , Matéria Orgânica Dissolvida , Alimentos , Fenômenos Magnéticos , Chá
2.
Adv Sci (Weinh) ; 6(21): 1900762, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728275

RESUMO

For most carbon-based materials, hierarchical porous structure including well-defined macropores, mesopores, and micropores is commonly seen in 3D aerogels, monoliths, or some carbothermic natural biomass. However, because of the filiform character and long draw ratio, it is difficult to achieve such pore network as well as attain excellent mechanical performance in a 1D single carbon fiber system. To address this issue, an innovative hierarchical porous and hollow carbon textile (HPHCT) is developed via the "dynamic template (KOH, SiO2, and Al2O3) calcination" strategy. Unlike conventional one-step activated carbonized fiber simply with meso or micropores, the fabricated textile generates honeycomb-like macropores uniformly spreading on fiber surface. More importantly, the ultra-lightweight yet flexible HPHCT is mechanically robust, superior to ordinary carbonized one. In addition, it delivers high capacitance of maximum 220 F g-1 as well as keeping long term stability with 100% retention after 10 000 cycles as freestanding electrodes in supercapacitor. Meanwhile, the all-solid integrated symmetric HPHCT supercapacitors demonstrates its high potential in powering electronics for wearable energy storage application.

3.
Nanomaterials (Basel) ; 9(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581528

RESUMO

The most known analogue of graphene, molybdenum disulfide (MoS2) nanosheet, has recently captured great interest because it can present properties beyond graphene in several high technological applications. Nonetheless, the lack of a feasible, sustainable, and scalable approach, in which synthesizing and functionalization of 2H-MoS2 nanosheets occur simultaneously, is still a challenge. Herein, a hydrothermal treatment has been utilised to reduce the effect of breaking mechanisms on the lateral size of produced nanosheets during the ball milling process. It was demonstrated that the hydrothermal pre-treatment led to the initial intercalation of an organic molecule such as 4,4'-diaminodiphenyl sulfone (DDS) within the stacked MoS2 sheets. Such a phenomenon can promote the horizontal shear forces and cause sliding and peeling mechanisms to be the dominated ones during low energy ball milling. Such combined methods can result in the production of 2H functionalized MoS2 nanosheets. The resultant few layers showed an average lateral dimension of more than 640 nm with the thickness as low as 6 nm and a surface area as high as 121.8 m2/g. These features of the synthesised MoS2 nanosheets, alongside their functional groups, can result in fully harnessing the reinforcing potential of MoS2 nanosheets for improvement of mechanical properties in different types of polymeric matrices.

4.
Materials (Basel) ; 12(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003531

RESUMO

Preparation of high-value pitch-based carbon fibres (CFs) from mesophase pitch precursor is of great importance towards low-cost CFs. Herein, we developed a method to reduce the cost of CFs precursor through incorporating high loading of coal tar pitch (CTP) into polyacrylonitrile (PAN) polymer solution. The CTP with a loading of 25% and 50% was blended with PAN and their spinnability was examined by electrospinning process. The effect of CTP on thermal stabilization and carbonisation of PAN fibres was investigated by thermal analyses methods. Moreover, electrospun PAN/CTP fibres were carbonised at two different temperatures i.e., 850 °C and 1200 °C and their crystallographic structures of resulting such low-cost PAN/CTP CFs were studied through X-ray diffraction (XRD) and Raman analyses. Compared to pure PAN CFs, the electrical resistivity of PAN/25% CTP CFs significantly decreased by 92%, reaching 1.6 kΩ/sq. The overall results showed that PAN precursor containing 25% CTP resulted in balanced properties in terms of spinnability, thermal and structural properties. It is believed that CTP has a great potential to be used as an additive for PAN precursor and will pave the way for cost-reduced and high-performance CFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...