Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(2): 1061-1068, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33393579

RESUMO

Elucidating the location of stabilized nanoclusters within their protein hosts is an existing challenge towards the optimized development of functional protein-nanoclusters. While nanoclusters of various metal compositions can be readily synthesized within a wide array of protein hosts and exhibit tailorable properties, the inability to identify the cluster stabilization region prevents controllable property manipulation of both metallic and protein components. Additionally, the ability to synthesize protein-nanoclusters in a consistent and high-throughput fashion is also highly desirable. In this effort, trypsin stabilized gold nanoclusters are synthesized through standard and microwave-enabled methodologies to determine the impact of processing parameters on the materials physical and functional properties. Density functional theory simulations are employed to localize high probability regions within the trypsin enzyme for Au25 cluster stabilization, which reveal that cluster location is likely within close proximity of the trypsin active region. Trypsin activity measurements support our findings from DFT, as trypsin enzymatic activity is eliminated following cluster growth and stabilization. Moreover, studies on the reactivity of Au NCs and synchrotron characterization measurements further reveal that clusters made by microwave-based techniques exhibit slight structural differences to those made via standard methodologies, indicating that microwave-based syntheses largely maintain the native structural attributes despite the faster synthetic conditions. Overall, this work illustrates the importance of understanding the connections between synthetic conditions, atomic-scale structure, and materials properties that can be potentially used to further tune the properties of metal cluster-protein materials for future applications.


Assuntos
Ouro , Micro-Ondas , Proteínas , Tripsina
2.
ACS Appl Mater Interfaces ; 8(33): 21221-7, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27328035

RESUMO

To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs.


Assuntos
Ouro/química , Fluorescência , Nanopartículas Metálicas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...