Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 10(11): 1554-1560, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31749910

RESUMO

A medicinal chemistry effort focused on identifying a structurally diverse candidate for phosphoinositide 3-kinase delta (PI3Kδ) led to the discovery of clinical candidate INCB050465 (20, parsaclisib). The unique structure of 20 contains a pyrazolopyrimidine hinge-binder in place of a purine motif that is present in other PI3Kδ inhibitors, such as idelalisib (1), duvelisib (2), and INCB040093 (3, dezapelisib). Parsaclisib (20) is a potent and highly selective inhibitor of PI3Kδ with drug-like ADME properties that exhibited an excellent in vivo profile as demonstrated through pharmacokinetic studies in rats, dogs, and monkeys and through pharmacodynamic and efficacy studies in a mouse Pfeiffer xenograft model.

2.
Clin Cancer Res ; 25(1): 300-311, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30206163

RESUMO

PURPOSE: Bromodomain and extraterminal domain (BET) proteins regulate the expression of many cancer-associated genes and pathways; BET inhibitors have demonstrated activity in diverse models of hematologic and solid tumors. We report the preclinical characterization of INCB054329, a structurally distinct BET inhibitor that has been investigated in phase I clinical trials. EXPERIMENTAL DESIGN: We used multiple myeloma models to investigate vulnerabilities created by INCB054329 treatment that could inform rational combinations. RESULTS: In addition to c-MYC, INCB054329 decreased expression of oncogenes FGFR3 and NSD2/MMSET/WHSC1, which are deregulated in t(4;14)-rearranged cell lines. The profound suppression of FGFR3 sensitized the t(4;14)-positive cell line OPM-2 to combined treatment with a fibroblast growth factor receptor inhibitor in vivo. In addition, we show that BET inhibition across multiple myeloma cell lines resulted in suppressed interleukin (IL)-6 Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling. INCB054329 displaced binding of BRD4 to the promoter of IL6 receptor (IL6R) leading to reduced levels of IL6R and diminished signaling through STAT3. Combination with JAK inhibitors (ruxolitinib or itacitinib) further reduced JAK-STAT signaling and synergized to inhibit myeloma cell growth in vitro and in vivo. This combination potentiated tumor growth inhibition in vivo, even in the MM1.S model of myeloma that is not intrinsically sensitive to JAK inhibition alone. CONCLUSIONS: Preclinical data reveal insights into vulnerabilities created in myeloma cells by BET protein inhibition and potential strategies that can be leveraged in clinical studies to enhance the activity of INCB054329.


Assuntos
Proteínas de Ciclo Celular/genética , Mieloma Múltiplo/tratamento farmacológico , Compostos Orgânicos/farmacologia , Receptores de Interleucina-6/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Histona-Lisina N-Metiltransferase/genética , Humanos , Janus Quinases/genética , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Ligação Proteica/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores
3.
Drug Metab Dispos ; 38(8): 1277-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20421447

RESUMO

An investigation was conducted to follow up on the apparent species-dependent toxicity reported for 6-(6-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-ylthio)quinoline (SGX523), a mesenchymal-epithelial transition factor (c-MET) inhibitor that entered clinical development for the treatment of solid tumors. Patients treated with SGX523 exhibited compromised renal function presumably resulting from crystal deposits in renal tubules. Our independent metabo'lite profiling of SGX523 indicates that a major NADPH-independent, late-eluting metabolite [6-(6-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-ylthio)quinolin-2(1H)-one (M11)] was generated by monkey and human liver S-9, and to a lesser extent by rat S-9, whereas M11 was absent in dog S-9 incubations. We confirmed the identity of M11 as 2-quinolinone-SGX523. Experiments with various molybdenum hydroxylase inhibitors showed that aldehyde oxidase (AO), and not xanthine oxidase, metabolized SGX523 to M11 in monkey and human liver cytosol. In addition, the oxygen incorporated into M11 was derived from water rather than atmospheric oxygen, corroborating M11 formation via AO. After oral dosing in monkeys, metabolite profiling of plasma and urine showed that SGX523 was indeed metabolized to M11 and its N-demethyl analog (M8). In urine, M11 levels were approximately 70-fold greater than that of SGX523, and the solubility of M11 in urine was only 3% of that of SGX523. In summary, SGX523 is metabolized by AO in a species-specific manner to a markedly less-soluble metabolite, M11. We propose that M11 is likely involved in the observed obstructive nephropathy reported in clinical studies. Moreover, this study illustrates the need to conduct thorough metabolic evaluations early in drug development to select the most relevant nonclinical species for toxicological evaluation.


Assuntos
Aldeído Oxidase/metabolismo , Piridazinas/metabolismo , Triazóis/metabolismo , Animais , Citosol/metabolismo , Cães , Humanos , Fígado/metabolismo , Macaca fascicularis , Microssomos Hepáticos/metabolismo , Oxigênio , Piridazinas/farmacocinética , Piridazinas/toxicidade , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Triazóis/farmacocinética , Triazóis/toxicidade
4.
J Biol Chem ; 277(32): 28677-82, 2002 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-12029090

RESUMO

Pepsin inhibition by 3-alkoxy-4-arylpiperidine (substituted piperidine; (3R,4R)-3-(4-bromobenzyloxy)-4-[4-(2-naphthalen-1-yl-2-oxo-ethoxy)phenyl]piperidine) has been studied using steady-state kinetic and pre-equilibrium binding methods. Data were compared with pepstatin A, a well known competitive inhibitor of pepsin. Steady-state analysis reveals that the substituted piperidine likewise behaves as a competitive inhibitor. Pre-equilibrium binding studies indicate that the substituted piperidine can displace a fluorescently labeled statine inhibitor from the enzyme active site. Simulation of the stopped-flow fluorescence transients provided estimates of the K(d) values of 1.4 +/- 0.2 microm and 39 +/- 2 nm for the piperidine and the fluorescently labeled statine, respectively. The effects of combinations of these two inhibitors resulted in a series of parallel lines when plotted by the method of Yonetani and Theorell (Yonetani, T., and Theorell, H. (1964) Arch. Biochem. Biophys. 106, 234-251), suggesting that the two inhibitors bind in a mutually exclusive fashion to pepsin. Fitting of the entire data set to the appropriate equation yielded an alpha factor of 8 +/- 1. The magnitude of this factor ( infinity > alpha > 1) can be explained by a conformational distinction between the enzyme species that bind each inhibitor. The effects of pH on the inhibition constants for pepstatin A and the substituted piperidine also suggest that the inhibitors bind to distinct conformational forms of the enzyme. No inhibition by the piperidine was observed at acidic pH, while pepstatin A inhibition is maximal at low pH values. Inhibition by the piperidine was maximal when a group with pK 4.8 +/- 0.2 was deprotonated and another group with pK 5.9 +/- 0.2 was protonated. Most likely these two groups are the catalytic aspartates with perturbed ionization properties as a result of a significant and unique conformational change. Taken together, these data suggest that the enzyme can readily interconvert between two conformers, one capable of binding substrate and pepstatin A and the other capable of binding the substituted piperidine.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Pepsina A/antagonistas & inibidores , Piperidinas/química , Animais , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Pepstatinas/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Especificidade por Substrato , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...