Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 11: 717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714338

RESUMO

The evergreen C3 plant Calotropis procera is native to arid environments. Thus, it grows under high vapor pressure deficit (VPD), intense light, and severe drought conditions. We measured several ecophysiological traits in C. procera plants growing in semi-arid and seacoast environments to assess the attributes that support its photosynthetic performance under these contrasting conditions. Gas exchange analysis, primary metabolism content, nutrients, the antioxidant system, and leaf anatomy traits were measured under field conditions. In the semi-arid environment, C. procera was exposed to a prolonged drought season with a negative soil water balance during the 2 years of the study. Calotropis procera plants were exposed to a positive soil water balance only in the rainy season in the seacoast environment. The leaves of C. procera showed the same photosynthetic rate under high or low VPD, even in dry seasons with a negative soil water balance. Photosynthetic pigments, leaf sugar content, and the activity of antioxidant enzymes were increased in both places in the dry season. However, the anatomical adjustments were contrasting: while, in the semi-arid environment, mesophyll thickness increased in the driest year, in the seacoast environment, the cuticle thickness and trichome density were increased. The ability to maintain photosynthetic performance through the seasons would be supported by new leaves with different morpho-anatomical traits, with contrasting changes between semi-arid and seacoast environments. Furthermore, our results suggest that an efficient antioxidative system and leaf sugar dynamics can contribute to protecting the photosynthetic machinery even under severe drought.

3.
Plant Physiol Biochem ; 127: 469-477, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29689510

RESUMO

Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments.


Assuntos
Capparaceae/crescimento & desenvolvimento , Capparaceae/metabolismo , Micorrizas/fisiologia , Fotossíntese/fisiologia , Água/metabolismo , Folhas de Planta
4.
PLoS One ; 9(8): e105514, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25137048

RESUMO

Ecophysiological traits of Prosopis juliflora (Sw.) DC. and a phylogenetically and ecologically similar native species, Anadenanthera colubrina (Vell.) Brenan, were studied to understand the invasive species' success in caatinga, a seasonally dry tropical forest ecosystem of the Brazilian Northeast. To determine if the invader exhibited a superior resource-capture or a resource-conservative strategy, we measured biophysical and biochemical parameters in both species during dry and wet months over the course of two years. The results show that P. juliflora benefits from a flexible strategy in which it frequently outperforms the native species in resource capture traits under favorable conditions (e.g., photosynthesis), while also showing better stress tolerance (e.g., antioxidant activity) and water-use efficiency in unfavorable conditions. In addition, across both seasons the invasive has the advantage over the native with higher chlorophyll/carotenoids and chlorophyll a/b ratios, percent N, and leaf protein. We conclude that Prosopis juliflora utilizes light, water and nutrients more efficiently than Anadenanthera colubrina, and suffers lower intensity oxidative stress in environments with reduced water availability and high light radiation.


Assuntos
Fabaceae/fisiologia , Prosopis/fisiologia , Estresse Fisiológico/fisiologia , Árvores/fisiologia , Brasil , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Ecossistema , Meio Ambiente , Fabaceae/metabolismo , Florestas , Espécies Introduzidas , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Prosopis/metabolismo , Estações do Ano , Árvores/metabolismo , Clima Tropical , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...