Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7229, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142636

RESUMO

By combining real-field observations and theoretical predictions, we describe role and relationships among north-propagating internal solitary waves (ISWs) generated by tidal currents in the Messina Strait (Mediterranean Sea), buoyancy deformation, sediment resuspension, and mixing effects. In particular, our results show that the presence of ISWs traveling along the Gioia Basin (north of the Strait) is not strictly related to seasonality. During winter, when the remote observation of ISWs from satellite is particularly rare due to the weak water column stratification, we observe elevation-type ISWs from hydrographic data. This finding reveals a different scenario with respect to the summer one, when the high stratified water column gives rise to depression-type north-propagating ISWs and the subsequent sea surface manifestations, detectable from satellite imagery. Moreover, our beam transmission observations and theoretical predictions of the induced near-bottom horizontal velocity suggest that these elevation-type ISWs induce sediment resuspension over the seafloor, as well as mixing effects as they break on the frontal slope nearby Capo Vaticano.

2.
Sci Rep ; 12(1): 7461, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523853

RESUMO

We present a review and a new assessment of the Lagrangian dispersion properties of a 2D model of chaotic advection and diffusion in a regular lattice of non stationary kinematic eddies. This model represents an ideal case for which it is possible to analyze the same system from three different perspectives: theory, modelling and experiments. At this regard, we examine absolute and relative Lagrangian dispersion for a kinematic flow, a hydrodynamic model (Delft3D), and a laboratory experiment, in terms of established dynamical system techniques, such as the measure of (Lagrangian) finite-scale Lyapunov exponents (FSLE). The new main results concern: (i) an experimental verification of the scale-dependent dispersion properties of the chaotic advection and diffusion model here considered; (ii) a qualitative and quantitative assessment of the hydro-dynamical Lagrangian simulations. The latter, even though obtained for an idealized open flow configuration, contributes to the overall validation of the computational features of the Delft3D model.

3.
Nat Commun ; 13(1): 2401, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504886

RESUMO

Wherever a loose bed of sand is subject to sufficiently strong winds, aeolian dunes form at predictable wavelengths and growth rates. As dunes mature and coarsen, however, their growth trajectories become more idiosyncratic; nonlinear effects, sediment supply, wind variability and geologic constraints become increasingly relevant, resulting in complex and history-dependent dune amalgamations. Here we examine a fundamental question: do aeolian dunes stop growing and, if so, what determines their ultimate size? Earth's major sand seas are populated by giant sand dunes, evolved over tens of thousands of years. We perform a global analysis of the topography of these giant dunes, and their associated atmospheric forcings and geologic constraints, and we perform numerical experiments to gain insight on temporal evolution of dune growth. We find no evidence of a previously proposed limit to dune size by atmospheric boundary layer height. Rather, our findings indicate that dunes may grow indefinitely in principle; but growth depends on morphology, slows with increasing size, and may ultimately be limited by sand supply.

4.
Sci Total Environ ; 817: 153002, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031364

RESUMO

COVID-19 lockdown brought to a drastic reduction of anthropic impacts on the environment worldwide, including the marine-coastal system. Earth-Observation (EO) data have the potential to monitor and diagnose the effects of the lockdown in terms of water quality. Here we connect the dots among some coastal environmental changes that occurred during the Italian COVID-19 lockdown by using EO data, also seeking to assess connectivity between inland and marine systems. We present a holistic analysis of spatial and temporal variability of environmental parameters in the North Adriatic Sea, Mediterranean basin, exploiting the synergy of different satellite sensors, as well as hydrologic data from in situ observations. Our analysis indicates a favourable interplay of environmental variability that resulted in negative anomalies of Chlorophyll-a concentration, with respect to the climatologic values. Peculiar meteo-oceanographic and hydrological conditions made hard to disentangle potential anthropogenic effects. However, a multi-year hierarchical cluster analysis of riverine remote sensing reflectances groups together the optical properties of inland waters during the lockdown. This emergent cluster highlights the possibility of a second-order, anthropogenic effect that, superimposed to the (first-order) environmental natural causes, may have enhanced water quality during the lockdown.


Assuntos
COVID-19 , COVID-19/epidemiologia , Clorofila A , Controle de Doenças Transmissíveis , Monitoramento Ambiental/métodos , Humanos , Percepção , SARS-CoV-2
5.
Sci Rep ; 10(1): 18630, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122692

RESUMO

Ecological connectivity is one of the most important processes that shape marine populations and ecosystems, determining their distribution, persistence, and productivity. Here we use the synergy of Lagrangian back-trajectories, otolith-derived ages of larvae, and satellite-based chlorophyll-a to identify spawning areas of European anchovy from ichthyoplanktonic data, collected in the Strait of Sicily (Central Mediterranean Sea), i.e., the crucial channel in between the European and African continents. We obtain new evidence of ecosystem connectivity between North Africa and recruitment regions off the southern European coasts. We assess this result by using bio-energetic modeling, which predicts species-specific responses to environmental changes by producing quantitative information on functional traits. Our work gives support to a collaborative and harmonized use of Geographical Sub-Areas, currently identified by the General Fisheries Commission for the Mediterranean. It also confirms the need to incorporate climate and environmental variability effects into future marine resources management plans, strategies, and directives.


Assuntos
Peixes/fisiologia , Modelos Biológicos , Animais , Clima , Ecossistema , Meio Ambiente , Peixes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Mar Mediterrâneo , Dinâmica Populacional
6.
Sci Rep ; 8(1): 11317, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054494

RESUMO

The heat contained in the ocean (OHC) dominates the Earth's energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2 - twice that assessed globally in the same period - exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column.

7.
PLoS One ; 11(6): e0155756, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258025

RESUMO

In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity). Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication). Monitoring chlorophyll (Chl) concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the "good environmental status" (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020) and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean) algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I) and coastal (i.e., Case II) waters. We apply the Mann-Kendall test and the Sens's method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However, the trends that we document are consistent with the findings of several previous studies.


Assuntos
Clorofila/análise , Cor , Eutrofização/fisiologia , Fitoplâncton/fisiologia , Água do Mar/química , Mudança Climática , Monitoramento Ambiental/métodos , Mar Mediterrâneo
8.
PLoS One ; 10(4): e0123213, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915489

RESUMO

Knowledge of the link between ocean hydrodynamics and distribution of small pelagic fish species is fundamental for the sustainable management of fishery resources. Both commercial and scientific communities are indeed seeking to provide services that could "connect the dots" among in situ and remote observations, numerical ocean modelling, and fisheries. In the Mediterranean Sea and, in particular, in the Sicily Channel the reproductive strategy of the European Anchovy (Engraulis encrasicolus) is strongly influenced by the oceanographic patterns, which are often visible in sea surface temperature satellite data. Based on these experimental evidences, we propose here a more general approach where the role of ocean currents, wind effects, and mesoscale activity are tied together. To investigate how these features affect anchovy larvae distribution, we pair ichthyoplankton observations to a wide remote sensing data set, and to Lagrangian numerical simulations for larval transport. Our analysis shows that while the wind-induced coastal current is able to transport anchovy larvae from spawning areas to the recruiting area off the Sicilian south-eastern tip, significant cross-shore transport due to the combination of strong northwesterly mistral winds and topographic effects delivers larvae away from the coastal conveyor belt. We then use a potential vorticity approach to describe the occurrence of larvae cross-shore transport. We conclude that monitoring and quantifying the upwelling on the southern Sicilian coast during the spawning season allows to estimate the cross-shore transport of larvae and the consequent decrease of individuals within the recruiting area.


Assuntos
Peixes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Animais , Ovos , Pesqueiros , Hidrodinâmica , Mar Mediterrâneo , Dinâmica Populacional , Estações do Ano , Sicília , Temperatura
9.
Artigo em Inglês | MEDLINE | ID: mdl-23679423

RESUMO

We consider fractional Stefan melting problems which involve a memory of the latent-heat accumulation. We show that the manner in which the memory of the latent-heat accumulation is recorded depends on the assumed nature of the transition between the liquid and the solid phases. When a sharp interface between the liquid and the solid phases is assumed, the memory of the accumulation of the latent heat is "lumped" in the history of the speed of the interface. In contrast, when a diffuse interface is assumed, the memory of the accumulation is "distributed" throughout the liquid phase. By use of an example problem, we demonstrate that the equivalence of the sharp- and diffuse-interface models can only occur when there is no memory in the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...