Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107755, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731623

RESUMO

Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood. Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol exposure on brain development remain unclear. Using a multi-omics approach, we investigated the effects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human embryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-induced chromatin opening changes linked to gene expression. Differentially methylated and/or expressed genes were involved in neurotransmission and cell fate determination trajectories. Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlapped with differentially methylated genes previously identified in cord blood associated with prenatal paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired neurodevelopment.

2.
iScience ; 25(11): 105279, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304110

RESUMO

Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.

3.
STAR Protoc ; 3(3): 101533, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36123835

RESUMO

Here, we describe a protocol for rapid neuronal differentiation from human embryonic stem cells (hESCs) toward a heterogenous population of telencephalic progenitors, immature and mature neurons, for drug-screening and early-brain differentiation studies. hESC neuronal differentiation depends on adhesion and minimal cell-passaging to avert monolayer cross-connectivity rupture. In this protocol, we detail optimized cell-seeding densities and coating conditions with high cell viability suitable for neurotoxicology and high-resolution single-cell omics studies. Daily media changes reduce compound instability and degradation for optimal screening. For complete details on the use and execution of this protocol, please refer to Samara et al. (2022).


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular/fisiologia , Sobrevivência Celular , Células-Tronco Embrionárias , Humanos , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...