Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 885369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082171

RESUMO

Standard assessment of cartilage repair progression by visual arthroscopy can be subjective and may result in suboptimal evaluation. Visible-near infrared (Vis-NIR) fiber optic spectroscopy of joint tissues, including articular cartilage and subchondral bone, provides an objective approach for quantitative assessment of tissue composition. Here, we applied this technique in the 350-2,500 nm spectral region to identify spectral markers of osteochondral tissue during repair with the overarching goal of developing a new approach to monitor repair of cartilage defects in vivo. Full thickness chondral defects were created in Yucatan minipigs using a 5-mm biopsy punch, and microfracture (MFx) was performed as a standard technique to facilitate repair. Tissues were evaluated at 1 month (in adult pigs) and 3 months (in juvenile pigs) post-surgery by spectroscopy and histology. After euthanasia, Vis-NIR spectra were collected in situ from the defect region. Additional spectroscopy experiments were carried out in vitro to aid in spectral interpretation. Osteochondral tissues were dissected from the joint and evaluated using the conventional International Cartilage Repair Society (ICRS) II histological scoring system, which showed lower scores for the 1-month than the 3-month repair tissues. In the visible spectral region, hemoglobin absorbances at 540 and 570 nm were significantly higher in spectra from 1-month repair tissue than 3-month repair tissue, indicating a reduction of blood in the more mature repair tissue. In the NIR region, we observed qualitative differences between the two groups in spectra taken from the defect, but differences did not reach significance. Furthermore, spectral data also indicated that the hydrated environment of the joint tissue may interfere with evaluation of tissue water absorbances in the NIR region. Together, these data provide support for further investigation of the visible spectral region for assessment of longitudinal repair of cartilage defects, which would enable assessment during routine arthroscopy, particularly in a hydrated environment.

2.
Cartilage ; 13(2_suppl): 722S-733S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33100027

RESUMO

OBJECTIVE: Articular cartilage exists in a hypoxic environment, which motivates the use of hypoxia-simulating chemical agents to improve matrix production in cartilage tissue engineering. The aim of this study was to investigate whether dimethyloxalylglycine (DMOG), a HIF-1α stabilizer, would improve matrix production in 3-dimensional (3D) porcine synovial-derived mesenchymal stem cell (SYN-MSC) co-culture with chondrocytes. DESIGN: Pellet cultures and scaffold-based engineered cartilage were grown in vitro to determine the impact of chemically simulated hypoxia on 2 types of 3D cell culture. DMOG-treated groups were exposed to DMOG from day 14 to day 21 and grown up to 6 weeks with n = 3 per condition and time point. RESULTS: The addition of DMOG resulted in HIF-1α stabilization in the exterior of the engineered constructs, which resulted in increased regional type II collagen deposition, but the stabilization did not translate to overall increased extracellular matrix deposition. There was no increase in HIF-1α stabilization in the pellet cultures. DMOG treatment also negatively affected the mechanical competency of the engineered cartilage. CONCLUSIONS: Despite previous studies that demonstrated the efficacy of DMOG, here, short-term treatment with DMOG did not have a uniformly positive impact on the chondrogenic capacity of SYN-MSCs in either pellet culture or in scaffold-based engineered cartilage, as evidenced by reduced matrix production. Such 3D constructs generally have a naturally occurring hypoxic center, which allows for the stabilization of HIF-1α in the interior tissue. Thus, short-term addition of DMOG may not further improve this in cartilage tissue engineered constructs.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Aminoácidos Dicarboxílicos , Animais , Condrogênese , Suínos , Engenharia Tecidual/métodos
3.
Tissue Eng Part C Methods ; 26(4): 225-238, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131710

RESUMO

Near infrared (NIR) spectroscopy using a fiber optic probe shows great promise for the nondestructive in situ monitoring of tissue engineered construct development; however, the NIR evaluation of matrix components in samples with high water content is challenging, as water absorbances overwhelm the spectra. In this study, we established approaches by which NIR spectroscopy can be used to select optimal individual engineered hydrogel constructs based on matrix content and mechanical properties. NIR spectroscopy of dry standard compounds allowed identification of several absorbances related to collagen and/or proteoglycan (PG), of which only two could be identified in spectra obtained from hydrated constructs, at ∼5940 and 5800 cm-1. In dry sample mixtures, the ratio of these peaks correlated positively to collagen and negatively to PG. In NIR spectra from engineered cartilage hydrogels, these peaks reflected higher collagen and PG content and dynamic modulus values, permitting the differentiation of constructs with poor and good matrix development. Similarly, the increasing baseline offset in raw NIR spectra also reflected matrix development in hydrated constructs. However, weekly monitoring of NIR spectra and the peaks at ∼5940 and 5800 cm-1 was not adequate to differentiate individual constructs based on matrix composition. Interestingly, changes in the baseline offset of raw spectra could be used to evaluate the growth trajectory of individual constructs. These results demonstrate an optimal approach for the use of fiber optic NIR spectroscopy for in situ monitoring of the development of engineered cartilage, which will aid in identifying individual constructs for implantation. Impact statement A current demand in tissue engineering is the establishment of nondestructive approaches to evaluate construct development during growth in vitro. In this article, we demonstrate original nondestructive approaches by which fiber optic NIR spectroscopy can be used to assess matrix (PG and collagen) formation and mechanical properties in hydrogel-based constructs. Our data provide a cohesive molecular-based approach for in situ longitudinal evaluation of construct development during growth in vitro. The establishment of these approaches is a valuable step toward the real-time identification and selection of constructs with optimal properties, which may lead to successful tissue integration upon in vivo implantation.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Colágeno/química , Matriz Extracelular/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Espectroscopia de Luz Próxima ao Infravermelho , Suínos
4.
Ethics Biol Eng Med ; 10(1): 37-49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-38770223

RESUMO

Use of outcomes from animal research for prediction of human response in tissue engineering studies has many ethical considerations. This article aims to contribute to the ethical discussion by delineating the framework of animal research and the ethical considerations at play, in particular with respect to cartilage tissue engineering. The history of animal research regulation and the current status of animal research in orthopedic tissue engineering is discussed. Questions addressed include how the proper animal models are chosen, how regulatory bodies ensure animal wellness and safety, and how guidelines are implemented and maintained throughout the life cycle of a project. Finally, we provide examples of both in vitro and in vivo cartilage tissue engineering research where animal models were employed as a predictive model of human response.

5.
Analyst ; 142(21): 4005-4017, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-28956032

RESUMO

Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.


Assuntos
Tecnologia de Fibra Óptica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Engenharia Tecidual , Osso e Ossos , Cartilagem , Humanos , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...