Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1090026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760648

RESUMO

Introduction: In the last decade, it has been discovered that allergen-bearing extracellular nanovesicles, termed "pollensomes", are released by pollen during germination. These extracellular vesicles (EVs) may play an important role in pollen-pistil interaction during fertilization, stabilizing the secreted bioactive molecules and allowing long-distance signaling. However, the molecular composition and the biological role of these EVs are still unclear. The present study had two main aims: (I) to clarify whether pollen germination is needed to release pollensomes, or if they can be secreted also in high humidity conditions; and (II) to investigate the molecular features of pollensomes following the most recent guidelines for EVs isolation and identification. Methods: To do so, pollensomes were isolated from hydrated and germinated kiwi (Actinidia chinensis Planch.) pollen, and characterized using imaging techniques, immunoblotting, and proteomics. Results: These analyses revealed that only germinated kiwi pollen released detectable concentrations of nanoparticles compatible with small EVs for shape and protein content. Moreover, a plant homolog of ALIX, which is a well-recognized and accepted marker of small EVs and exosomes in mammals, was found in pollensomes. Discussion: The presence of this protein, along with other proteins involved in endocytosis, is consistent with the hypothesis that pollensomes could comprehend a prominent subpopulation of plant exosome-like vesicles.

2.
Toxics ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422905

RESUMO

Nanosilver applications, including sensing and water treatment, have significantly increased in recent years, although safety for humans and the environment is still under debate. Here, we tested the environmental safety of a novel formulation of silver nanoparticles functionalized with citrate and L-cysteine (AgNPcitLcys) on freshwater cnidarian Hydra vulgaris as an emerging ecotoxicological model for the safety of engineered nanomaterials. AgNPcitLcys behavior was characterized by dynamic light scattering (DLS), while Ag release was measured by inductively coupled plasma mass spectrometry (ICP-MS). H. vulgaris (n = 12) subjects were evaluated for morphological aberration after 96 h of exposure and regeneration ability after 96 h and 7 days of exposure, after which the predatory ability was also assessed. The results show a low dissolution of AgNPcitLcys in Hydra medium (max 0.146% of nominal AgNPcitLcys concentration) and highlight a lack of ecotoxicological effects, both on morphology and regeneration, confirming the protective role of the double coating against AgNP biological effects. Predatory ability evaluation suggests a mild impairment of the entangling capacity or of the functionality of the tentacles, as the number of preys killed but not ingested was higher than the controls in all exposed animals. While their long-term sub-lethal effects still need to be further evaluated on H. vulgaris, AgNPcitLcys appears to be a promising tool for environmental applications, for instance, for water treatment and sensing.

3.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887233

RESUMO

Low-molecular-weight, aspartic-acid-rich proteins (ASP-RICH) have been assumed to be involved in the self-incompatibility process of clementine. The role of ASP-RICH is not known, but hypothetically they could sequester calcium ions (Ca2+) and affect Ca2+-dependent mechanisms. In this article, we analyzed the effects induced by clementine ASP-RICH proteins (CcASP-RICH) when expressed in the tobacco heterologous system, focusing on the male gametophyte. The aim was to gain insight into the mechanism of action of ASP-RICH in a well-known cellular system, i.e., the pollen tube. Pollen tubes of tobacco transgenic lines expressing CcASP-RICH were analyzed for Ca2+ distribution, ROS, proton gradient, as well as cytoskeleton and cell wall. CcASP-RICH modulated Ca2+ content and consequently affected cytoskeleton organization and the deposition of cell wall components. In turn, this affected the growth pattern of pollen tubes. Although the expression of CcASP-RICH did not exert a remarkable effect on the growth rate of pollen tubes, effects at the level of growth pattern suggest that the expression of ASP-RICH may exert a regulatory action on the mechanism of plant cell growth.


Assuntos
Citrus , Tubo Polínico , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Polinização , Nicotiana/genética
4.
Plant Cell Rep ; 41(5): 1301-1318, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303156

RESUMO

KEY MESSAGE: The article concerns the association between callose synthase and cytoskeleton by biochemical and ultrastructural analyses in the pollen tube. Results confirmed this association and immunogold labeling showed a colocalization. Callose is a cell wall polysaccharide involved in fundamental biological processes, from plant development to the response to abiotic and biotic stress. To gain insight into the deposition pattern of callose, it is important to know how the enzyme callose synthase is regulated through the interaction with the vesicle-cytoskeletal system. Actin filaments likely determine the long-range distribution of callose synthase through transport vesicles but the spatial/biochemical relationships between callose synthase and microtubules are poorly understood, although experimental evidence supports the association between callose synthase and tubulin. In this manuscript, we further investigated the association between callose synthase and microtubules through biochemical and ultrastructural analyses in the pollen tube model system, where callose is an essential component of the cell wall. Results by native 2-D electrophoresis, isolation of callose synthase complex and far-western blot confirmed that callose synthase is associated with tubulin and can therefore interface with cortical microtubules. In contrast, actin and sucrose synthase were not permanently associated with callose synthase. Immunogold labeling showed colocalization between the enzyme and microtubules, occasionally mediated by vesicles. Overall, the data indicate that pollen tube callose synthase exerts its activity in cooperation with the microtubular cytoskeleton.


Assuntos
Nicotiana , Tubo Polínico , Glucosiltransferases , Microtúbulos , Nicotiana/fisiologia , Tubulina (Proteína)
5.
Protoplasma ; 259(1): 75-90, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33839957

RESUMO

Stinging nettle is a perennial herbaceous species holding value as a multi-purpose plant. Indeed, its leaves and roots are phytofactories providing functional ingredients of medicinal interest and its stems produce silky and resistant extraxylary fibers (a.k.a. bast fibers) valued in the biocomposite sector. Similarly to what is reported in other fiber crops, the stem of nettle contains both lignified and hypolignified fibers in the core and cortex, respectively, and it is therefore a useful model for cell wall research. Indeed, data on nettle stem tissues can be compared to those obtained in other models, such as hemp and flax, to support hypotheses on the differentiation and development of bast fibers. The suitability of the nettle stem as model for cell wall-related research was already validated using a transcriptomics and biochemical approach focused on internodes at different developmental stages sampled at the top, middle, and bottom of the stem. We here sought to complement and enrich these data by providing immunohistochemical and ultrastructural details on young and older stem internodes. Antibodies recognizing non-cellulosic polysaccharides (galactans, arabinans, rhamnogalacturonans) and arabinogalactan proteins were here investigated with the goal of understanding whether their distribution changes in the stem tissues in relation to the bast fiber and vascular tissue development. The results obtained indicate that the occurrence and distribution of cell wall polysaccharides and proteins differ between young and older internodes and that these changes are particularly evident in the bast fibers.


Assuntos
Linho , Urtica dioica , Parede Celular , Polissacarídeos , Transcriptoma
6.
Front Plant Sci ; 12: 709534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630461

RESUMO

Cysteine proteases, belonging to the C1-papain family, play a major role in plant growth and development, senescence, and immunity. There is evidence to suggest that pollen cysteine protease (CP) (ZmCP03) is involved in regulating the anther development and pollen formation in maize. However, there is no report on the genome-wide identification and comparison of CPs in the pollen coat and other tissues in maize. In this study, a total of 38 homologous genes of ZmCP03 in maize were identified. Subsequently, protein motifs, conserved domains, gene structures, and duplication patterns of 39 CPs are analyzed to explore their evolutionary relationship and potential functions. The cis-elements were identified in the upstream sequence of 39 CPs, especially those that are related to regulating growth and development and responding to environmental stresses and hormones. The expression patterns of these genes displayed remarked difference at a tissue or organ level in maize based on the available transcriptome data in the public database. Quantitative reverse transcription PCR (RT-qPCR) analysis showed that ZmCP03 was preferably expressed at a high level in maize pollen. Analyses by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot, immunofluorescence and immunogold electron microscopy all validated the cellular localization of ZmCP03 in both the pollen coat and pollen cytoplasm. In addition, 142 CP genes from Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and cotton (Gossypium hirsutum), together with 39 maize CPs, were retrieved to analyze their evolution by comparing with orthologous genes. The results suggested that ZmCP03 was relatively conservative and stable during evolution. This study may provide a referential evidence on the function of ZmCP03 in pollen development and germination in maize.

7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681874

RESUMO

In recent decades, atmospheric pollution led to a progressive reduction of the ozone layer with a consequent increase in UV-B radiation. Despite the high adaptation of olive trees to the Mediterranean environment, the progressive increase of UV-B radiation is a risk factor for olive tree cultivation. It is therefore necessary to understand how high levels of UV-B radiation affect olive plants and to identify olive varieties which are better adapted. In this study we analyzed two Italian olive varieties subjected to chronic UV-B stress. We focused on the effects of UV-B radiation on RubisCO, in terms of quantity, enzymatic activity and isoform composition. In addition, we also analyzed changes in the activity of antioxidant enzymes (SOD, CAT, GPox) to get a comprehensive picture of the antioxidant system. We also evaluated the effects of UV-B on the enzyme sucrose synthase. The overall damage at biochemical level was also assessed by analyzing changes in Hsp70, a protein triggered under stress conditions. The results of this work indicate that the varieties (Giarraffa and Olivastra Seggianese) differ significantly in the use of specific antioxidant defense systems, as well as in the activity and isoform composition of RubisCO. Combined with a different use of sucrose synthase, the overall picture shows that Giarraffa optimized the use of GPox and opted for a targeted choice of RubisCO isoforms, in addition to managing the content of sucrose synthase, thereby saving energy during critical stress points.


Assuntos
Antioxidantes/metabolismo , Olea/metabolismo , Olea/efeitos da radiação , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Enzimas/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Itália , Peroxidação de Lipídeos/efeitos da radiação , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Olea/citologia , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Raios Ultravioleta
8.
Int J Mol Sci ; 22(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34445241

RESUMO

Global warming leads to a progressive rise in environmental temperature. Plants, as sessile organisms, are threatened by these changes; the male gametophyte is extremely sensitive to high temperature and its ability to preserve its physiological status under heat stress is known as acquired thermotolerance. This latter can be achieved by exposing plant to a sub-lethal temperature (priming) or to a progressive increase in temperature. The present research aims to investigate the effects of heat priming on the functioning of tobacco pollen grains. In addition to evaluating basic physiological parameters (e.g., pollen viability, germination and pollen tube length), several aspects related to a correct pollen functioning were considered. Calcium (Ca2+) level, reactive oxygen species (ROS) and related antioxidant systems were investigated, also to the organization of actin filaments and cytoskeletal protein such as tubulin (including tyrosinated and acetylated isoforms) and actin. We also focused on sucrose synthase (Sus), a key metabolic enzyme and on the content of main soluble sugars, including UDP-glucose. Results here obtained showed that a pre-exposure to sub-lethal temperatures can positively enhance pollen performance by altering its metabolism. This can have a considerable impact, especially from the point of view of breeding strategies aimed at improving crop species.


Assuntos
Temperatura Alta , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termotolerância , Proteínas de Plantas/genética , Tubo Polínico/genética , Nicotiana/genética
9.
Front Plant Sci ; 11: 1018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733518

RESUMO

In clementine, failure of fertilization can result in parthenocarpic fruit development, which has several advantages, such as seedless fruit, longer shelf-life, and greater consumer appeal. Recently, S-RNases have been identified in Citrus grandis, thus revealing that the self-incompatibility (SI) reaction relies on the S-RNase gametophytic mechanism. The fundamental role of environmental factors, mostly temperature, in determining the numbers of pollen tubes reaching the ovary is also well established in Citrus. In the present work, temperature-dependent pollen-pistil interactions in C. clementina were analyzed, focusing on several morphological aspects, as well as on polyamine (PA) content and the activity and distribution of transglutaminase (TGase), both reported to be involved in the SI response in pear and in pummelo. Results clearly indicate that temperature contributed to a different activation of the SI response, which occurs at optimal temperature of 25°C but was by-passed at 15°C. TGase activity was stimulated during the SI response, and it localized differently in the compatible and incompatible interaction: in compatible pollinated styles, TGase localized inside the style canal, while it was detected all around it in incompatible crosses. TGase localization and activity were congruent with the levels of soluble and insoluble conjugated PAs and with morphological evidences, which highlighted cell wall modification occurring as a result of SI.

10.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629917

RESUMO

To encourage the applicability of nano-adsorbent materials for heavy metal ion removal from seawater and limit any potential side effects for marine organisms, an ecotoxicological evaluation based on a biological effect-based approach is presented. ZnCl2 (10 mg L-1) contaminated artificial seawater (ASW) was treated with newly developed eco-friendly cellulose-based nanosponges (CNS) (1.25 g L-1 for 2 h), and the cellular and tissue responses of marine mussel Mytilus galloprovincialis were measured before and after CNS treatment. A control group (ASW only) and a negative control group (CNS in ASW) were also tested. Methods: A significant recovery of Zn-induced damages in circulating immune and gill cells and mantle edges was observed in mussels exposed after CNS treatment. Genetic and chromosomal damages reversed to control levels in mussels' gill cells (DNA integrity level, nuclear abnormalities and apoptotic cells) and hemocytes (micronuclei), in which a recovery of lysosomal membrane stability (LMS) was also observed. Damage to syphons, loss of cilia by mantle edge epithelial cells and an increase in mucous cells in ZnCl2-exposed mussels were absent in specimens after CNS treatment, in which the mantle histology resembled that of the controls. No effects were observed in mussels exposed to CNS alone. As further proof of CNS' ability to remove Zn(II) from ASW, a significant reduction of >90% of Zn levels in ASW after CNS treatment was observed (from 6.006 to 0.510 mg L-1). Ecotoxicological evaluation confirmed the ability of CNS to remove Zn from ASW by showing a full recovery of Zn-induced toxicological responses to the levels of mussels exposed to ASW only (controls). An effect-based approach was thus proven to be useful in order to further support the environmentally safe (ecosafety) application of CNS for heavy metal removal from seawater.

11.
Sci Total Environ ; 725: 138457, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32302847

RESUMO

The occurrence of nanoplastics in oceans' surface waters is no more a hypothesis and it could severely affect marine organisms from different trophic levels. Nanoscale particles interaction with dissolved natural organic matter (NOM) significantly influence their behaviour and consequently bioavailability and toxicity to marine species. Extracellular polymeric substances (EPS) are among the main components of the NOM pool in seawater yet have been so far little investigated for their effect in altering the physical-chemical properties of nanosized objects. Here we employed EPS from marine diatom Phaeodactylum tricornutum to study the evolution of an eco-corona formation upon incubation with 60 nm carboxylated polystyrene nanoparticles (PS-COOH NPs), as proxy for nanoplastics in seawater. EPS significantly reduced PS-COOH NPs aggregation rate compared to biomolecule free natural seawater (NSW) and caused the formation of complexes constituted by both carbohydrate and protein components. Size Exclusion Chromatography (SEC) revealed four main distinct groups of peaks, spanning from high (>100 kDa) to low molecular weight (20 kDa) molecules, characterized by a high chemical heterogeneity. The lowering of the chromatographic signals detected after EPS incubation with PS-COOH NPs, mainly in the eluates at high molecular weight, suggests that an important fraction of EPS remained adsorbed on PS-COOH NPs. In agreement, SDS-PAGE analysis of proteins adsorbed on PS-COOH showed the occurrence of an eco-corona formed by proteins in the range of molecular weight 30-100 kDa. No toxicity to diatoms was observed upon PS-COOH exposure (72 h, 1-100 mg L-1) even by adding a further source of exogenous EPS during exposure. Moreover, the addition of EPS reduced ROS production, even when cells were incubated with PS-COOH NPs at 10 and 50 mg L-1, suggesting an antioxidant scavenging activity of EPS.


Assuntos
Diatomáceas , Matriz Extracelular de Substâncias Poliméricas , Nanopartículas , Poluentes Químicos da Água , Animais , Matriz Extracelular de Substâncias Poliméricas/química , Poliestirenos
12.
Environ Pollut ; 262: 114268, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32120257

RESUMO

Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS-COOH NPs, 90 nm) for 15 days (1, 10, 50 µg/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms' fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor. S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom's chain length and the adhesion of PS NPs onto the algal surface.


Assuntos
Diatomáceas , Nanopartículas , Ecossistema , Plásticos , Poliestirenos
13.
Plant Physiol Biochem ; 144: 197-206, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31585398

RESUMO

Cyclophilins (CyPs) are ubiquitous proteins involved in a wide variety of processes including protein maturation and trafficking, receptor complex stabilization, apoptosis, receptor signaling, RNA processing, and spliceosome assembly. The ubiquitous presence is justified by their peptidyl-prolyl cis-trans isomerase (PPIase) activity, catalyzing the rotation of X-Pro peptide bonds from a cis to a trans conformation, a critical rate-limiting step in protein folding, as over 90% of proteins contain trans prolyl imide bonds. In Arabidopsis 35 CyPs involved in plant development have been reported, showing different subcellular localizations and tissue- and stage-specific expression. In the present work, we focused on the localization of CyPs in pear (Pyrus communis) pollen, a model system for studies on pollen tube elongation and on pollen-pistil self-incompatibility response. Fluorescent, confocal and immuno-electron microscopy showed that this protein is present in the cytoplasm, organelles and cell wall, as confirmed by protein fractionation. Moreover, an 18-kDa CyP isoform was specifically released extracellularly when pear pollen was incubated with the Ca2+ chelator EGTA.


Assuntos
Cálcio/metabolismo , Ciclofilinas/metabolismo , Pyrus/metabolismo , Microscopia Imunoeletrônica , Pólen/metabolismo
14.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547209

RESUMO

In this work, hydrophilic silver nanoparticles (AgNPs), bifunctionalized with citrate (Cit) and L-cysteine (L-cys), were synthesized. The typical local surface plasmon resonance (LSPR) at λ max = 400 nm together with Dynamic Light Scattering (DLS) measurements (<2RH> = 8 ± 1 nm) and TEM studies (Ø = 5 ± 2 nm) confirmed the system nanodimension and the stability in water. Molecular and electronic structures of AgNPs were investigated by FTIR, SR-XPS, and NEXAFS techniques. We tested the system as plasmonic sensor in water with 16 different metal ions, finding sensitivity to Hg2+ in the range 1-10 ppm. After this first screening, the molecular and electronic structure of the AgNPs-Hg2+ conjugated system was deeply investigated by SR-XPS. Moreover, in view of AgNPs application as sensors in real water systems, environmental safety assessment (ecosafety) was performed by using standardized ecotoxicity bioassay as algal growth inhibition tests (OECD 201, ISO 10253:2006), coupled with determination of Ag+ release from the nanoparticles in fresh and marine aqueous exposure media, by means of ICP-MS. These latest studies confirmed low toxicity and low Ag+ release. Therefore, these ecosafe AgNPs demonstrate a great potential in selective detection of environmental Hg2+, which may attract a great interest for several biological research fields.

15.
Plants (Basel) ; 8(9)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500309

RESUMO

Drought stress is one of the most severe conditions for plants, especially in the face of the emerging problem of global warming. This issue is important when considering economically relevant crops, including the tomato. For these plants, a promising solution is the valorization of local agrobiodiversity as a source of genetic variability. In this paper we investigated how six Italian tomato varieties react to a prolonged period of water depletion. We used a multidisciplinary approach, from genetics to plant physiology and cytology, to provide a detailed overview of the response of plants to stress. The varieties analyzed, each characterized by a specific genetic profile, showed a genotype-specific response with the variety 'Fragola' being the most resistant and the variety 'Pisanello' the most susceptible. For all the parameters evaluated, 'Fragola' performed in a manner comparable to that of control plants. On the contrary, 'Pisanello' appeared to be more affected and showed an increase in the number of stomata and a drastic increase in antioxidants, a symptom of acute oxidative stress. Our work suggests the existence of a valuable reservoir of genetic biodiversity with more drought-tolerant tomato genotypes opening the way to further exploitation and use of local germplasm in breeding programs.

16.
Plant Direct ; 3(8): e00151, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417976

RESUMO

Stinging nettle (Urtica dioica L.) produces silky cellulosic fibres, as well as bioactive molecules. To improve the knowledge on nettle and enhance its opportunities of exploitation, a draft transcriptome of the "clone 13" (a fibre clone) is here presented. The transcriptome of whole internodes sampled at the top and middle of the stem is then compared with the core and cortical tissues sampled at the bottom. Young internodes show an enrichment in genes involved in the biosynthesis of phytohormones (auxins and jasmonic acid) and secondary metabolites (flavonoids). The core of internodes collected at the bottom of the stem is enriched in genes partaking in different aspects of secondary cell wall formation (cellulose, hemicellulose, lignin biosynthesis), while the cortical tissues reveal the presence of a C starvation signal probably due to the UDP-glucose demand necessary for the thickening phase of bast fibres. Cell wall analysis indicates a difference in rhamnogalacturonan structure/composition of mature bast fibres, as evidenced by the higher levels of galactose measured, as well as the occurrence of more water-soluble pectins in elongating internodes. The targeted quantification of phenolics shows that the middle internode and the cortical tissues at the bottom have higher contents than top internodes. Ultrastructural analyses reveal the presence of a gelatinous layer in bast fibres with a lamellar structure. The data presented will be an important resource and reference for future molecular studies on a neglected fibre crop.

17.
Planta ; 250(5): 1539-1556, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31352512

RESUMO

MAIN CONCLUSION: The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp. In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.


Assuntos
Cannabis/genética , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Cannabis/ultraestrutura , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/ultraestrutura , Transporte Proteico
18.
Front Plant Sci ; 10: 741, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249577

RESUMO

Pollen-stigma interaction is a highly selective process, which leads to compatible or incompatible pollination, in the latter case, affecting quantitative and qualitative aspects of productivity in species of agronomic interest. While the genes and the corresponding protein partners involved in this highly specific pollen-stigma recognition have been studied, providing important insights into pollen-stigma recognition in self-incompatible (SI), many other factors involved in the SI response are not understood yet. This work concerns the study of transglutaminase (TGase), polyamines (PAs) pattern and metabolomic profiles following the pollination of Pyrus communis L. pistils with compatible and SI pollen in order to deepen their possible involvement in the reproduction of plants. Immunolocalization, abundance and activity of TGase as well as the content of free, soluble-conjugated and insoluble-bound PAs have been investigated. 1H NMR-profiling coupled with multivariate data treatment (PCA and PLS-DA) allowed to compare, for the first time, the metabolic patterns of not-pollinated and pollinated styles. Results clearly indicate that during the SI response TGase activity increases, resulting in the accumulation of PAs conjugated to hydroxycinnamic acids and other small molecules. Metabolomic analysis showed a remarkable differences between pollinated and not-pollinated styles, where, except for glucose, all the other metabolites where less concentrated. Moreover, styles pollinated with compatible pollen showed the highest amount of sucrose than SI pollinated ones, which, in turn, contained highest amount of all the other metabolites, including aromatic compounds, such as flavonoids and a cynnamoil derivative.

19.
Plant Sci ; 283: 329-342, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128704

RESUMO

Cold is an abiotic stress seriously threatening crop productivity by decreasing biomass production. The pollen tube is a target of cold stress, but also a useful model to address questions on cell wall biosynthesis. We here provide (immuno)cytological data relative to the impact of cold on the pollen tube cell wall. We clearly show that the growth pattern is severely affected by the stress, since the typical pulsed-growth mechanism accompanied by the periodic deposition of pectin rings is absent/severely reduced. Additionally, pectins and cellulose accumulate in bulges provoked by the stress, while callose, which colocalizes with pectins in the periodic rings formed during pulsed growth, accumulates randomly in the stressed samples. The altered distribution of the cell wall components is accompanied by differences in the localization of glucan synthases: cellulose synthase shows a more diffuse localization, while callose synthase shows a more frequent cytoplasmic accumulation, thereby denoting a failure in plasma membrane insertion. The cell wall observations are complemented by the analysis of intracellular Ca2+, pH and reactive oxygen species (ROS): while in the case of pH no major differences are observed, a less focused Ca2+ and ROS gradients are present in the stressed samples. The standard oscillatory growth of pollen tubes is recovered by transient changes of turgor pressure induced by hypoosmotic media. Overall our data contribute to the understanding of the impact that cold stress has on the normal development of the pollen tube and unveil the cell wall-related aberrant features accompanying the observed alterations.


Assuntos
Parede Celular/metabolismo , Nicotiana/genética , Tubo Polínico/crescimento & desenvolvimento , Cálcio/metabolismo , Parede Celular/fisiologia , Celulose/metabolismo , Resposta ao Choque Frio , Técnica Indireta de Fluorescência para Anticorpo , Germinação , Glucanos/metabolismo , Concentração de Íons de Hidrogênio , Pressão Osmótica , Pectinas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/metabolismo
20.
Ann Bot ; 122(1): 23-43, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29659664

RESUMO

Background and Aims: Pollen tubes are rapidly growing, photosynthetically inactive cells that need high rates of energy to support growth. Energy can derive from internal and external storage sources. The lack of carbon sources can cause various problems during pollen tube growth, which in turn could affect the reproduction of plants. Methods: We analysed the effects of energy deficiency on the development of Nicotiana tabacum pollen tubes by replacing sucrose with glycerol in the growth medium. We focused on cell growth and related processes, such as metabolite composition and cell wall synthesis. Key Results: We found that the lack of sucrose affects pollen germination and pollen tube length during a specific growth period. Both sugar metabolism and ATP concentration were affected by sucrose shortage when pollen tubes were grown in glycerol-based media; this was related to decreases in the concentrations of glucose, fructose and UDP-glucose. The intracellular pH and ROS levels also showed a different distribution in pollen tubes grown in sucrose-depleted media. Changes were also observed at the cell wall level, particularly in the content and distribution of two enzymes related to cell wall synthesis (sucrose synthase and callose synthase). Furthermore, both callose and newly secreted cell wall material (mainly pectins) showed an altered distribution corresponding to the lack of oscillatory growth in pollen tubes. Growth in glycerol-based media also temporarily affected the movement of generative cells and, in parallel, the deposition of callose plugs. Conclusion: Pollen tubes represent an ideal model system for studying metabolic pathways during the growth of plant cells. In our study, we found evidence that glycerol, a less energetic source for cell growth than sucrose, causes critical changes in cell wall deposition. The evidence that different aspects of pollen tube growth are affected is an indication that pollen tubes adapt to metabolic stress.


Assuntos
Redes e Vias Metabólicas , Nicotiana/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Estresse Fisiológico , Sacarose/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/enzimologia , Tubo Polínico/genética , Tubo Polínico/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...