Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5607, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811137

RESUMO

Defect-based quantum systems in wide bandgap semiconductors are strong candidates for scalable quantum-information technologies. However, these systems are often complicated by charge-state instabilities and interference by phonons, which can diminish spin-initialization fidelities and limit room-temperature operation. Here, we identify a pathway around these drawbacks by showing that an engineered quantum well can stabilize the charge state of a qubit. Using density-functional theory and experimental synchrotron X-ray diffraction studies, we construct a model for previously unattributed point defect centers in silicon carbide as a near-stacking fault axial divacancy and show how this model explains these defects' robustness against photoionization and room temperature stability. These results provide a materials-based solution to the optical instability of color centers in semiconductors, paving the way for the development of robust single-photon sources and spin qubits.

2.
Nano Lett ; 19(5): 3131-3137, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30950280

RESUMO

We show that packed, horizontally aligned films of single-walled carbon nanotubes are hyperbolic metamaterials with ultrasubwavelength unit cells and dynamic tunability. Using Mueller matrix ellipsometry, we characterize the films' optical properties, which are doping level dependent, and find a broadband hyperbolic region tunable in the mid-infrared. To characterize the dispersion of in-plane hyperbolic plasmon modes, we etch the nanotube films into nanoribbons with differing widths and orientations relative to the nanotube axis, and we observe that the hyperbolic modes support strong light localization. An agreement between the experiments and theoretical models using the ellipsometry data indicates that the packed carbon nanotubes support bulk anisotropic responses at the nanoscale. Self-assembled films of carbon nanotubes are well-suited for applications in thermal emission and photodetection, and they serve as model systems for studying light-matter interactions in the deep subwavelength regime.

3.
Proc Natl Acad Sci U S A ; 115(50): 12662-12667, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30459274

RESUMO

In cavity quantum electrodynamics, optical emitters that are strongly coupled to cavities give rise to polaritons with characteristics of both the emitters and the cavity excitations. We show that carbon nanotubes can be crystallized into chip-scale, two-dimensionally ordered films and that this material enables intrinsically ultrastrong emitter-cavity interactions: Rather than interacting with external cavities, nanotube excitons couple to the near-infrared plasmon resonances of the nanotubes themselves. Our polycrystalline nanotube films have a hexagonal crystal structure, ∼25-nm domains, and a 1.74-nm lattice constant. With this extremely high nanotube density and nearly ideal plasmon-exciton spatial overlap, plasmon-exciton coupling strengths reach 0.5 eV, which is 75% of the bare exciton energy and a near record for room-temperature ultrastrong coupling. Crystallized nanotube films represent a milestone in nanomaterials assembly and provide a compelling foundation for high-ampacity conductors, low-power optical switches, and tunable optical antennas.

4.
Science ; 357(6352): 649, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28818932
5.
Nano Lett ; 17(9): 5641-5645, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28763225

RESUMO

Low-dimensional plasmonic materials can function as high quality terahertz and infrared antennas at deep subwavelength scales. Despite these antennas' strong coupling to electromagnetic fields, there is a pressing need to further strengthen their absorption. We address this problem by fabricating thick films of aligned, uniformly sized semiconducting carbon nanotubes and showing that their plasmon resonances are strong, narrow, and broadly tunable. With thicknesses ranging from 25 to 250 nm, our films exhibit peak attenuation reaching 70%, ensemble quality factors reaching 9, and electrostatically tunable peak frequencies by a factor of 2.3. Excellent nanotube alignment leads to the attenuation being 99% linearly polarized along the nanotube axis. Increasing the film thickness blueshifts the plasmon resonators down to peak wavelengths as low as 1.4 µm, a new near-infrared regime in which they can both overlap the S11 nanotube exciton energy and access the technologically important infrared telecom band.

6.
ACS Nano ; 11(8): 7697-7701, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28749135

RESUMO

High-performance logic based on carbon nanotubes (CNTs) requires high-density arrays of selectively placed semiconducting CNTs. Although polymer-wrapping methods can allow CNTs to be sorted to a >99.9% semiconducting purity, patterning these polymer-wrapped CNTs is an outstanding problem. We report the directed self-assembly of polymer-coated semiconducting CNTs using self-assembled monolayers that bind CNTs into arrays of patterned trenches. We demonstrate that CNTs can be placed into 100 nm wide HfO2 trenches with an electrical connection yield as high as 90% and into 50 nm wide trenches with a yield as high as 70%. Our directed self-assembly method is an important step forward in pitch scaling.

7.
Phys Rev Lett ; 118(25): 257401, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696746

RESUMO

Carbon nanotubes provide a rare access point into the plasmon physics of one-dimensional electronic systems. By assembling purified nanotubes into uniformly sized arrays, we show that they support coherent plasmon resonances, that these plasmons couple to nanotube and substrate phonons, and that the resulting phonon-plasmon resonances have quality factors as high as 10. Because nanotube plasmons intensely strengthen electromagnetic fields and light-matter interactions, they provide a compelling platform for surface-enhanced spectroscopy and tunable optical devices at deep-subwavelength scales.

9.
Nat Nanotechnol ; 12(9): 861-865, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674460

RESUMO

As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

10.
Phys Rev Lett ; 117(22): 220503, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925750

RESUMO

Dynamic nuclear polarization (DNP) is an attractive method for initializing nuclear spins that are strongly coupled to optically active electron spins because it functions at room temperature and does not require strong magnetic fields. In this Letter, we theoretically demonstrate that DNP, with near-unity polarization efficiency, can be generally realized in weakly coupled electron spin-nuclear spin systems. Furthermore, we theoretically and experimentally show that the nuclear spin polarization can be reversed by magnetic field variations as small as 0.8 Gauss. This mechanism offers new avenues for DNP-based sensors and radio-frequency free control of nuclear qubits.

11.
Nat Commun ; 7: 12935, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27679936

RESUMO

Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.

12.
Sci Adv ; 1(10): e1501015, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702444

RESUMO

Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-µm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.

13.
Phys Rev Lett ; 114(24): 247603, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197014

RESUMO

We demonstrate optically pumped dynamic nuclear polarization of (29)Si nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99%±1% degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 µK. By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

14.
Nat Mater ; 14(2): 160-3, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25437259

RESUMO

The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries. Nonetheless, because certain SiC defects have electronic states with sharp optical and spin transitions, they are increasingly recognized as a platform for quantum information and nanoscale sensing. Here, we show that individual electron spins in high-purity monocrystalline 4H-SiC can be isolated and coherently controlled. Bound to neutral divacancy defects, these states exhibit exceptionally long ensemble Hahn-echo spin coherence times, exceeding 1 ms. Coherent control of single spins in a material amenable to advanced growth and microfabrication techniques is an exciting route towards wafer-scale quantum technologies.

15.
Phys Rev Lett ; 112(18): 187601, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856721

RESUMO

The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields.

16.
Nat Commun ; 4: 1819, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23652007

RESUMO

Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to 'designer' spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron-electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins.

17.
Nano Lett ; 11(10): 4134-7, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21879753

RESUMO

We study photodetection in graphene near a local electrostatic gate, which enables active control of the potential landscape and carrier polarity. We find that a strong photoresponse only appears when and where a p-n junction is formed, allowing on-off control of photodetection. Photocurrents generated near p-n junctions do not require biasing and can be realized using submicrometer gates. Locally modulated photoresponse enables a new range of applications for graphene-based photodetectors including, for example, pixilated infrared imaging with control of response on subwavelength dimensions.

18.
Nano Lett ; 8(10): 3429-33, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18767829

RESUMO

The size scaling of the threshold voltage required for the amorphous-to-crystalline transition in phase-change memory (PCM) is investigated using planar devices incorporating individual GeTe and Sb2Te3 nanowires. We show that the scaling law governing threshold switching changes from constant field to constant voltage scaling as the amorphous domain length falls below 10 nm. This crossover is a consequence of the energetic requirement for carrier multiplication through inelastic scattering processes and indicates that the size of PCM bits can be miniaturized to the true nanometer scale.

19.
Nano Lett ; 7(2): 363-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17256915

RESUMO

We report the observation of a current-driven metal (M)-insulator (I) phase oscillation in two-terminal devices incorporating individual WxV1-xO2 nanobeams connected to parallel shunt capacitors. The frequency of the phase oscillation reaches above 5 MHz for approximately 1 mum long devices. The M-I phase oscillation, which coincides with the charging/discharging of the capacitor, occurs through the axial drift of a single M-I domain wall driven by Joule heating and the Peltier effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...