Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 796: 149054, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328894

RESUMO

The study area is located on King George Island, where 90% of the area is permanently glaciated. This study provides a comprehensive analysis of the inorganic and organic chemistry of snow cover in the icefield and a comparison against previous results obtained in fresh water. Snow samples were collected in the summer of 2017 in the Warszawa Icefield area. Sampling points are located along two transects: between the Arctowski Polish Polar Station and the Carlini Base (N = 4), and from the forefield to the upper part of Ecology Glacier (N = 5). In the snow samples, (1) basic ions, (2) major trace metals and metalloids (and B), and (3) polycyclic aromatic hydrocarbons (PAHs) were detected and quantified. Additionally, the parameters of pH, specific electrolytic conductivity (SEC25) and total organic carbon (TOC) were determined. The results show a low concentration of inorganic elements (<30 mg/L), TOC (<1 mg/L) and PAHs (0.11-1.4 ng/L) in collected snow samples. A slight increase in PAHs and heavy-metals concentration has been observed at the marginal parts of the icefield, which suggests the impact of scientific stations. Based on this result there is a need to conduct research on pollutant levels in ice cores on King George Island to assess the risk associated with rapid glacier thawing and pollution remobilisation.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Regiões Antárticas , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Neve
2.
Commun Biol ; 4(1): 148, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514890

RESUMO

Climate change-induced glacial melt affects benthic ecosystems along the West Antarctic Peninsula, but current understanding of the effects on benthic primary production and respiration is limited. Here we demonstrate with a series of in situ community metabolism measurements that climate-related glacial melt disturbance shifts benthic communities from net autotrophy to heterotrophy. With little glacial melt disturbance (during cold El Niño spring 2015), clear waters enabled high benthic microalgal production, resulting in net autotrophic benthic communities. In contrast, water column turbidity caused by increased glacial melt run-off (summer 2015 and warm La Niña spring 2016) limited benthic microalgal production and turned the benthic communities net heterotrophic. Ongoing accelerations in glacial melt and run-off may steer shallow Antarctic seafloor ecosystems towards net heterotrophy, altering the metabolic balance of benthic communities and potentially impacting the carbon balance and food webs at the Antarctic seafloor.


Assuntos
Processos Autotróficos , Biota , Ciclo do Carbono , Aquecimento Global , Processos Heterotróficos , Microalgas/metabolismo , Regiões Antárticas , Monitoramento Ambiental , Cadeia Alimentar , Gelo , Microalgas/crescimento & desenvolvimento , Oceanos e Mares , Estações do Ano
3.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760108

RESUMO

Glacial meltwater discharge from Antarctica is a key influence on the marine environment, impacting ocean circulation, sea level and productivity of the pelagic and benthic ecosystems. The responses elicited depend strongly on the characteristics of the meltwater releases, including timing, spatial structure and geochemical composition. Here we use isotopic tracers to reveal the time-varying pattern of meltwater during a discharge event from the Fourcade Glacier into Potter Cove, northern Antarctic Peninsula. The discharge is strongly dependent on local air temperature, and accumulates into an extremely thin, buoyant layer at the surface. This layer showed evidence of elevated turbidity, and responded rapidly to changes in atmospherically driven circulation to generate a strongly pulsed outflow from the cove to the broader ocean. These characteristics contrast with those further south along the Peninsula, where strong glacial frontal ablation is driven oceanographically by intrusions of warm deep waters from offshore. The Fourcade Glacier switched very recently to being land-terminating; if retreat rates elsewhere along the Peninsula remain high and glacier termini progress strongly landward, the structure and impact of the freshwater discharges are likely to increasingly resemble the patterns elucidated here.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

4.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29760111

RESUMO

Although the relationship between surface air temperature and glacial discharge has been studied in the Northern Hemisphere for at least a century, similar studies for Antarctica remain scarce and only for the past four decades. This data scarcity is due to the extreme meteorological conditions and terrain inaccessibility. As a result, the contribution of glacial discharge in Antarctica to global sea-level rise is still attached with great uncertainties, especially from partly glaciated hydrological basins as can be found in the Antarctic Peninsula. In this paper, we propose a simplified model based on the Monte Carlo method and Fourier analysis for estimating discharge in partly glaciated and periglacial hydrological catchments with a summer melt period. Our model offers the advantage of scarce data requirements and quick recognition of periglacial environments. Discharge was found to be highly correlated with surface air temperature for the partially glaciated hydrological catchments on Potter Peninsula, King George Island (Isla 25 Mayo). The model is simple to implement and requires few variables to make most versatile simulations. We have obtained a monthly simulated maximum flow estimates between 0.74 and 1.07 m3 s-1 for two creeks (South and North Potter) with a very good fit to field observations. The glacial mean monthly discharge during summer months was estimated to 0.44±0.02 m3 s-1 for South Potter Creek and 0.55±0.02 m3 s-1 for North Potter Creek.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...