Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(12): 128001, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579233

RESUMO

The computer simulation of many molecular processes is complicated by long timescales caused by rare transitions between long-lived states. Here, we propose a new approach to simulate such rare events, which combines transition path sampling with enhanced exploration of configuration space. The method relies on exchange moves between configuration and trajectory space, carried out based on a generalized ensemble. This scheme substantially enhances the efficiency of the transition path sampling simulations, particularly for systems with multiple transition channels, and yields information on thermodynamics, kinetics and reaction coordinates of molecular processes without distorting their dynamics. The method is illustrated using the isomerization of proline in the KPTP tetrapeptide.

2.
Front Mol Biosci ; 9: 826505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573739

RESUMO

Riboswitch RNAs regulate gene expression by conformational changes induced by environmental conditions and specific ligand binding. The guanidine-II riboswitch is proposed to bind the small molecule guanidinium and to subsequently form a kissing loop interaction between the P1 and P2 hairpins. While an interaction was shown for isolated hairpins in crystallization and electron paramagnetic resonance experiments, an intrastrand kissing loop formation has not been demonstrated. Here, we report the first evidence of this interaction in cis in a ligand and Mg2+ dependent manner. Using single-molecule FRET spectroscopy and detailed structural information from coarse-grained simulations, we observe and characterize three interconvertible states representing an open and kissing loop conformation as well as a novel Mg2+ dependent state for the guanidine-II riboswitch from E. coli. The results further substantiate the proposed switching mechanism and provide detailed insight into the regulation mechanism for the guanidine-II riboswitch class. Combining single molecule experiments and coarse-grained simulations therefore provides a promising perspective in resolving the conformational changes induced by environmental conditions and to yield molecular insights into RNA regulation.

3.
J Chem Phys ; 155(8): 084503, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470357

RESUMO

Water exchange between the first and second hydration shell is essential for the role of Mg2+ in biochemical processes. In order to provide microscopic insights into the exchange mechanism, we resolve the exchange pathways by all-atom molecular dynamics simulations and transition path sampling. Since the exchange kinetics relies on the choice of the water model and the ionic force field, we systematically investigate the influence of seven different polarizable and non-polarizable water and three different Mg2+ models. In all cases, water exchange can occur either via an indirect or direct mechanism (exchanging molecules occupy different/same position on the water octahedron). In addition, the results reveal a crossover from an interchange dissociative (Id) to an associative (Ia) reaction mechanism dependent on the range of the Mg2+-water interaction potential of the respective force field. Standard non-polarizable force fields follow the Id mechanism in agreement with experimental results. By contrast, polarizable and long-ranged non-polarizable force fields follow the Ia mechanism. Our results provide a comprehensive view on the influence of the water model and the ionic force field on the exchange dynamics and the foundation to assess the choice of the force field in biomolecular simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...