Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 92: 104881, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905883

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a bacterial defense mechanism against bacteriophages composed of two different parts: the CRISPR array and the Cas genes. The spacer acquisition is done by the adaptation module consisting of the hallmark Cas1 Cas2 proteins, which inserts new spacers into the CRISPR array. Here we aimed to describe the CRISPR-Cas system in Proteus mirabilis (P. mirabilis) isolates. CRISPR loci was observed in 30 genomic contents of 109 P. mirabilis isolates that each locus was consisted of two CRISPR arrays and each array had a different preserved leader sequences. Only the type I-E CRISPR-Cas system was common in these isolates. The source of the spacers was identified, including phages and prophages. CRISPR spacer origin analysis also identified a conserved PAM sequence of 5'-AAG-3' nucleotide stretch. Through collecting spacers, CRISPR arrays of P. mirabilis isolates were expanded mostly by integration of bacteriophageal source of spacers. This study shows novel findings in the area of the P-mirabilis CRISPR-Cas system. In this regard, among analyzed genome of P. mirabilis isolates, Class I CRISR-Cas systems were dominant, and all belonged to type I-E. In the flanks of the CRISPR, some other elements with regulatory role were also found. A motif of 11 nt size was found to be preserved among the analyzed genome. We believe that it might has a CRISPR-Cas system transcription facilitator by targeting the Rho element.


Assuntos
Sistemas CRISPR-Cas , Proteus mirabilis/genética , Bacteriófagos/fisiologia , Prófagos/fisiologia , Proteus mirabilis/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...