Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36983518

RESUMO

One of the most challenging aspects of long-term research based on microorganisms is the maintenance of isolates under ex situ conditions, particularly the conservation of phytopathological characteristics. Our research group has worked for more than 10 years with Gaumannomyces graminis var. tritici (Ggt), the main biotic factor affecting wheat. In this sense we preserved the microorganisms in oil overlaid. However, several strains preserved for a long time lost their pathogenicity. These strains show white and non-infective mycelia. In this sense, we hypothesized that this is attributable to low melanin content. Melanin is a natural pigment mainly involved in UV protection, desiccation, salinity, oxidation, and fungal pathogenicity. Therefore, understanding the melanin role on Ggt pathogenicity is fundamental to developing melanin activation strategies under laboratory studies. In this study, we induce melanin activation by UV-A light chamber, 320 to 400 nm (T1) and temperature changes of 30 °C, 15 °C, and 20 °C (T2). Fungal pathogenicity was evaluated by determination of blackening roots and Ggt was quantified by real-time PCR in inoculated wheat plants. Results revealed that Ggt grown under UV-A (T1) conditions showed around 40% higher melanin level with a concomitant effect on root infection (98% of blackened roots) and 4-fold more Ggt genome copy number compared with the control (non-infective mycelia) being T1, a more inductor factor compared with T2. These findings would support the role of melanin in pathogenicity in darkly pigmented fungi such as Ggt and could serve as a basis for activating pathogenicity under laboratory conditions.

2.
Front Plant Sci ; 11: 574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499805

RESUMO

Hymenoglossum cruentum (Hymenophyllaceae) is a poikilohydric, homoiochlorophyllous desiccation-tolerant (DT) epiphyte fern. It can undergo fast and frequent dehydration-rehydration cycles. This fern is highly abundant at high-humidity/low-light microenvironments within the canopy, although rapid changes in humidity and light intensity are frequent. The objective of this research is to identify genes associated to desiccation-rehydration cycle in the transcriptome of H. cruentum to better understand the genetic dynamics behind its desiccation tolerance mechanism. H. cruentum plants were subjected to a 7 days long desiccation-rehydration process and then used to identify key expressed genes associated to its capacity to dehydrate and rehydrate. The relative water content (RWC) and maximum quantum efficiency (F v/F m) of H. cruentum fronds decayed to 6% and 0.04, respectively, at the end of the desiccation stage. After re-watering, the fern showed a rapid recovery of RWC and F v/F m (ca. 73% and 0.8, respectively). Based on clustering and network analysis, our results reveal key genes, such as UBA/TS-N, DYNLL, and LHC, orchestrating intracellular motility and photosynthetic metabolism; strong balance between avoiding cell death and defense (CAT3, AP2/ERF) when dehydrated, and detoxifying pathways and stabilization of photosystems (GST, CAB2, and ELIP9) during rehydration. Here we provide novel insights into the genetic dynamics behind the desiccation tolerance mechanism of H. cruentum.

3.
BMC Plant Biol ; 20(1): 56, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019526

RESUMO

BACKGROUND: Filmy-ferns (Hymenophyllaceae) are poikilohydric, homoiochlorophyllous desiccation-tolerant (DT) epiphytes. They can colonize lower and upper canopy environments of humid forest. Filmy-ferns desiccate rapidly (hours), contrasting with DT angiosperms (days/weeks). It has been proposed that desiccation tolerance in filmy-ferns would be associated mainly with constitutive features rather than induced responses during dehydration. However, we hypothesize that the inter-specific differences in vertical distribution would be associated with different dynamics of gene expression within the dehydration or rehydration phases. A comparative transcriptomic analysis with an artificial neural network was done on Hymenophyllum caudiculatum (restricted to lower canopy) and Hymenophyllum dentatum (reach upper canopy) during a desiccation/rehydration cycle. RESULTS: Raw reads were assembled into 69,599 transcripts for H. dentatum and 34,726 transcripts for H. caudiculatum. Few transcripts showed significant changes in differential expression (DE). H. caudiculatum had ca. twice DE genes than H. dentatum and higher proportion of increased-and-decreased abundance of genes occurs during dehydration. In contrast, the abundance of genes in H. dentatum decreased significantly when transitioning from dehydration to rehydration. According to the artificial neural network results, H. caudiculatum enhanced osmotic responses and phenylpropanoid related pathways, whilst H. dentatum enhanced its defense system responses and protection against high light stress. CONCLUSIONS: Our findings provide a deeper understanding of the mechanisms underlying the desiccation tolerance responses of two filmy ferns and the relationship between the species-specific response and the microhabitats these ferns occupy in nature.


Assuntos
Dessecação , Ecossistema , Gleiquênias/genética , Expressão Gênica , Estresse Fisiológico/genética , Chile , Mapeamento Cromossômico , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...