Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 11(2): 409-14, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26653336

RESUMO

FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here, we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Cloridrato de Fingolimode/análogos & derivados , Cloridrato de Fingolimode/uso terapêutico , Neoplasias/tratamento farmacológico , Pirrolidinas/química , Pirrolidinas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cloridrato de Fingolimode/farmacologia , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Pirrolidinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo
2.
Neuropharmacology ; 85: 314-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863045

RESUMO

The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.


Assuntos
Quimiotaxia/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Imunossupressores/farmacologia , Oxazóis/farmacologia , Animais , Células CHO , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Encefalomielite Autoimune Experimental/fisiopatologia , Células Endoteliais/metabolismo , Feminino , Cloridrato de Fingolimode , Humanos , Imunossupressores/química , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oxazóis/química , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...