Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400225, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839076

RESUMO

T cell receptor (TCR) recognition of a peptide-major histocompatibility complex (pMHC) is crucial for adaptive immune response. The identification of therapeutically relevant TCR-pMHC protein pairs is a bottleneck in the implementation of TCR-based immunotherapies. The ability to computationally design TCRs to target a specific pMHC requires automated integration of next-generation sequencing, protein-protein structure prediction, molecular dynamics, and TCR ranking. A pipeline to evaluate patient-specific, sequence-based TCRs to a target pMHC is presented. Using the three most frequently expressed TCRs from 16 colorectal cancer patients, the protein-protein structure of the TCRs to the target CEA peptide-MHC is predicted using Modeller and ColabFold. TCR-pMHC structures are compared using automated equilibration and successive analysis. ColabFold generated configurations require an ≈2.5× reduction in equilibration time of TCR-pMHC structures compared to Modeller. The structural differences between Modeller and ColabFold are demonstrated by root mean square deviation (≈0.20 nm) between clusters of equilibrated configurations, which impact the number of hydrogen bonds and Lennard-Jones contacts between the TCR and pMHC. TCR ranking criteria that may prioritize TCRs for evaluation of in vitro immunogenicity are identified, and this ranking is validated by comparing to state-of-the-art machine learning-based methods trained to predict the probability of TCR-pMHC binding.

2.
Cell Death Differ ; 30(11): 2408-2431, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37838774

RESUMO

Receptor clustering is the most critical step to activate extrinsic apoptosis by death receptors belonging to the TNF superfamily. Although clinically unsuccessful, using agonist antibodies, the death receptors-5 remains extensively studied from a cancer therapeutics perspective. However, despite its regulatory role and elevated function in ovarian and other solid tumors, another tumor-enriched death receptor called Fas (CD95) remained undervalued in cancer immunotherapy until recently, when its role in off-target tumor killing by CAR-T therapies was imperative. By comprehensively analyzing structure studies in the context of the binding epitope of FasL and various preclinical Fas agonist antibodies, we characterize a highly significant patch of positively charged residue epitope (PPCR) in its cysteine-rich domain 2 of Fas. PPCR engagement is indispensable for superior Fas agonist signaling and CAR-T bystander function in ovarian tumor models. A single-point mutation in FasL or Fas that interferes with the PPCR engagement inhibited apoptotic signaling in tumor cells and T cells. Furthermore, considering that clinical and immunological features of the autoimmune lymphoproliferative syndrome (ALPS) are directly attributed to homozygous mutations in FasL, we reveal differential mechanistic details of FasL/Fas clustering at the PPCR interface compared to described ALPS mutations. As Fas-mediated bystander killing remains vital to the success of CAR-T therapies in tumors, our findings highlight the therapeutic analytical design for potentially effective Fas-targeting strategies using death agonism to improve cancer immunotherapy in ovarian and other solid tumors.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Humanos , Feminino , Epitopos , Receptor fas/genética , Receptor fas/metabolismo , Proteína Ligante Fas , Linfócitos T , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Apoptose , Anticorpos/farmacologia
3.
Nat Chem ; 15(11): 1599-1606, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37400595

RESUMO

The use of coordination complexes within covalent organic frameworks can significantly diversify the structures and properties of this class of materials. Here we combined coordination chemistry and reticular chemistry by preparing frameworks that consist of a ditopic (p-phenylenediamine) and mixed tritopic moieties-an organic ligand and a scandium coordination complex of similar sizes and geometries, both bearing terminal phenylamine groups. Changing the ratio of organic ligand to scandium complex enabled the preparation of a series of crystalline covalent organic frameworks with tunable levels of scandium incorporation. Removal of scandium from the material with the highest metal content subsequently resulted in a 'metal-imprinted' covalent organic framework that exhibits a high affinity and capacity for Sc3+ ions in acidic environments and in the presence of competing metal ions. In particular, the selectivity of this framework for Sc3+ over common impurity ions such as La3+ and Fe3+ surpasses that of existing scandium adsorbents.

4.
Biophys J ; 122(15): 3133-3145, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381600

RESUMO

The coordinated (dis)engagement of the membrane-bound T cell receptor (TCR)-CD3-CD4 complex from the peptide-major histocompatibility complex (pMHC) is fundamental to TCR signal transduction and T cell effector function. As such, an atomic-scale understanding would not only enhance our basic understanding of the adaptive immune response but would also accelerate the rational design of TCRs for immunotherapy. In this study, we explore the impact of the CD4 coreceptor on the TCR-pMHC (dis)engagement by constructing a molecular-level biomimetic model of the CD3-TCR-pMHC and CD4-CD3-TCR-pMHC complexes within a lipid bilayer. After allowing the system complexes to equilibrate (engage), we use steered molecular dynamics to dissociate (disengage) the pMHC. We find that 1) the CD4 confines the pMHC closer to the T cell by 1.8 nm at equilibrium; 2) CD4 confinement shifts the TCR along the MHC binding groove engaging a different set of amino acids and enhancing the TCR-pMHC bond lifetime; 3) the CD4 translocates under load increasing the interaction strength between the CD4-pMHC, CD4-TCR, and CD4-CD3; and 4) upon dissociation, the CD3-TCR complex undergoes structural oscillation and increased energetic fluctuation between the CD3-TCR and CD3-lipids. These atomic-level simulations provide mechanistic insight on how the CD4 coreceptor impacts TCR-pMHC (dis)engagement. More specifically, our results provide further support (enhanced bond lifetime) for a force-dependent kinetic proofreading model and identify an alternate set of amino acids in the TCR that dominate the TCR-pMHC interaction and could thus impact the design of TCRs for immunotherapy.


Assuntos
Biomimética , Receptores de Antígenos de Linfócitos T , Complexo CD3/química , Complexo CD3/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Principal de Histocompatibilidade , Peptídeos/química , Simulação de Dinâmica Molecular , Ligação Proteica , Aminoácidos/metabolismo
5.
J Phys Chem B ; 127(22): 5094-5101, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222436

RESUMO

Light-driven and photocurable polymer-based additive manufacturing (AM) has enormous potential due to its excellent resolution and precision. Acrylated resins that undergo radical chain-growth polymerization are widely used in photopolymer AM due to their fast kinetics and often serve as a departure point for developing other resin materials for photopolymer-based AM technologies. For successful control of the photopolymer resins, the molecular basis of the acrylate free-radical polymerization has to be understood in detail. We present an optimized reactive force field (ReaxFF) for molecular dynamics (MD) simulations of acrylate polymer resins that captures radical polymerization thermodynamics and kinetics. The force field is trained against an extensive training set including density functional theory (DFT) calculations of reaction pathways along the radical polymerization from methyl acrylate to methyl butyrate, bond dissociation energies, and structures and partial charges of several molecules and radicals. We also found that it was critical to train the force field against an incorrect, nonphysical reaction pathway observed in simulations that used parameters not optimized for acrylate polymerization. The parameterization process utilizes a parallelized search algorithm, and the resulting model can describe polymer resin formation, crosslinking density, conversion rate, and residual monomers of the complex acrylate mixtures.

6.
Biophys J ; 122(10): 1748-1761, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37056052

RESUMO

In the present work, we describe Martini3 coarse-grained models of polystyrene and carboxyl-terminated polystyrene functionalized carbon nanotubes (CNTs) and investigate their interactions with lipid bilayers with and without cholesterol (CHOL) using molecular dynamics simulations. By changing the polystyrene chain length and grafting density at the end ring of the CNTs at two different nanotube concentrations, we observe the translocation of nanoparticles as well as changes in the lipid bilayer properties. Our results show that all developed models passively diffuse into the membranes without causing any damage to the membrane integrity, although high concentrations of CNTs induce structural and elastic changes in lipid bilayers. In the presence of CHOL, increasing CNT concentration results in decreased rates of CHOL transmembrane motions. On the other hand, CNTs are prone to lipid and polystyrene blockage, which affects their equilibrated configurations, and tilting behavior within the membranes. Hence, we demonstrate that polystyrene-functionalized CNTs are promising drug-carrier agents. However, polystyrene chain length and grafting density are important factors to consider to enhance the efficiency of drug delivery.


Assuntos
Bicamadas Lipídicas , Nanotubos de Carbono , Bicamadas Lipídicas/química , Poliestirenos , Simulação de Dinâmica Molecular , Colesterol/química
7.
Micromachines (Basel) ; 14(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36838072

RESUMO

Atomic force microscopy (AFM) in conjunction with microfluidic delivery was utilized to produce three-dimensional (3D) lipid structures following a custom design. While AFM is well-known for its spatial precision in imaging and 2D nanolithography, the development of AFM-based nanotechnology into 3D nanoprinting requires overcoming the technical challenges of controlling material delivery and interlayer registry. This work demonstrates the concept of 3D nanoprinting of amphiphilic molecules such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Various formulations of POPC solutions were tested to achieve point, line, and layer-by-layer material delivery. The produced structures include nanometer-thick disks, long linear spherical caps, stacking grids, and organizational chiral architectures. The POPC molecules formed stacking bilayers in these constructions, as revealed by high-resolution structural characterizations. The 3D printing reached nanometer spatial precision over a range of 0.5 mm. The outcomes reveal the promising potential of our designed technology and methodology in the production of 3D structures from nanometer to continuum, opening opportunities in biomaterial sciences and engineering, such as in the production of 3D nanodevices, chiral nanosensors, and scaffolds for tissue engineering and regeneration.

8.
J Biomol Struct Dyn ; 41(12): 5614-5623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35763488

RESUMO

The binding interaction between the T-cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) is modulated by several factors (known and unknown), however, investigations into effects of glycosylation are limited. A fully glycosylated computational model of the TCR bound to the pMHC is developed to investigate the effects of glycosylation on dissociation kinetics from the pMHC. Here, we examine the effects of N-glycosylation on TCR-pMHC bond strength using steered molecular dynamic simulations. N-glycosylation is a post-translational modification that adds sugar moieties to molecules and can modulate the activity of several immune molecules. Using a TCR-pMHC pair found in melanoma as a case study, our study demonstrates that N-glycosylation of the TCR-pMHC alters the proteins' conformation; increases the bond lifetime; and increases the number of hydrogen bonds and Lennard-Jones Contacts involved in the TCR-pMHC bond. We find that weak glycan-protein or glycan-glycan interactions impact the equilibrated structure of the TCR and pMHC leading to an increase in the overall bond strength of the TCR-pMHC complex including the duration and energetic strength under constant load. These results indicate that N-glycosylation plays an important role in the TCR-pMHC bond and should be considered in future computational and experimental studies.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Receptores de Antígenos de Linfócitos T , Cinética , Glicosilação , Ligação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos/química
9.
Biophys J ; 121(22): 4271-4279, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36230001

RESUMO

To design drug-delivery agents for therapeutic and diagnostic applications, understanding the mechanisms by which covalently functionalized carbon nanotubes penetrate and interact with cell membranes is of great importance. Here, we report all-atom molecular dynamics results from polystyrene and carboxyl-terminated polystyrene-modified carbon nanotubes and show their translocation behavior across a model lipid bilayer together with their potential to deliver a molecule of the drug ibuprofen into the cell. Our results indicate that functionalized carbon nanotubes are internalized by the membrane in hundreds of nanoseconds and that drug loading increases the internalization speed further. Both loaded and unloaded tubes cross the closest leaflet of the bilayer by nonendocytic pathways, and for the times studied, the drug molecule remains trapped inside the pristine tube while remaining attached at the end of polystyrene-modified tube. On the other hand, carboxyl-terminated polystyrene functionalization allows the drug to be completely released into the lower leaflet of the bilayer without imposing damage to the membrane. This study shows that polystyrene functionalization is a promising alternative and facilitates drug delivery as a benchmark case.


Assuntos
Nanotubos de Carbono , Poliestirenos , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Portadores de Fármacos/metabolismo
10.
Comput Struct Biotechnol J ; 20: 3473-3481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860406

RESUMO

The rational design of T Cell Receptors (TCRs) for immunotherapy has stagnated due to a limited understanding of the dynamic physiochemical features of the TCR that elicit an immunogenic response. The physiochemical features of the TCR-peptide major histocompatibility complex (pMHC) bond dictate bond lifetime which, in turn, correlates with immunogenicity. Here, we: i) characterize the force-dependent dissociation kinetics of the bond between a TCR and a set of pMHC ligands using Steered Molecular Dynamics (SMD); and ii) implement a machine learning algorithm to identify which physiochemical features of the TCR govern dissociation kinetics. Our results demonstrate that the total number of hydrogen bonds between the CDR2ß-MHC⍺(ß), CDR1α-Peptide, and CDR3ß-Peptide are critical features that determine bond lifetime.

11.
Comput Struct Biotechnol J ; 20: 2124-2133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832631

RESUMO

An atomic-scale mechanism of T Cell Receptor (TCR) mechanosensing of peptides in the binding groove of the peptide-major histocompatibility complex (pMHC) may inform the design of novel TCRs for immunotherapies. Using steered molecular dynamics simulations, our study demonstrates that mutations to peptides in the binding groove of the pMHC - which are known to discretely alter the T cell response to an antigen - alter the MHC conformation at equilibrium. This subsequently impacts the overall strength (duration and length) of the TCR-pMHC bond under constant load. Moreover, physiochemical features of the TCR-pMHC dynamic bond strength, such as hydrogen bonds and Lennard-Jones contacts, correlate with the immunogenic response elicited by the specific peptide in the MHC groove. Thus, formation of transient TCR-pMHC bonds is characteristic of immunogenic peptides, and steered molecular dynamics simulations can be used in the overall design strategy of TCRs for immunotherapies.

12.
Chem Sci ; 13(16): 4573-4580, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656126

RESUMO

Fully reduced polyoxometalates are predicted to give rise to a broad and strong absorption spectrum, suitable energy levels, and unparalleled electronic and optical properties. However, they are not available to date. Here, an unprecedented fully reduced polyoxomolybdate cluster, namely Na8[MoV 60O140(OH)28]·19H2O {MoV 60}, was successfully designed and obtained under hydrothermal conditions, which is rare and is the largest fully reduced polyoxometalate reported so far. The MoV 60 molecule describes one Keggin {ε-Mo12} encapsulated in an unprecedented {Mo24} cage, giving rise to a double truncated tetrahedron quasi-nesting architecture, which is further face-capped by another four {Mo6} tripods. Its crystalline stability in air, solvent tolerance, and photosensitivity were all shown. As a cheap and robust molecular light-absorber model possessing wide light absorption, MoV 60 was applied to build a co-sensitized solar cell photoelectronic device along with N719 dyes and the optimal power conversion efficiency was 28% higher than that of single-dye sensitization. These results show that MoV 60 polyoxometalate could serve as an ideal model for the design and synthesis of all-inorganic molecular light-absorbers for other light-driven processes in the future.

13.
Biotechnol J ; 17(9): e2100678, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35657481

RESUMO

SARS-CoV-2 Spike is a key protein that mediates viral entry into cells and elicits antibody responses. Its importance in infection, diagnostics, and vaccinations has created a large demand for purified Spike for clinical and research applications. Spike is difficult to express, prompting modifications to the protein and expression platforms to improve yields. Alternatively, the Spike receptor-binding domain (RBD) is commonly expressed with higher titers, though it has lower sensitivity in serological assays. Here, we improve transient Spike expression in Chinese hamster ovary (CHO) cells. We demonstrate that Spike titers increase significantly over the expression period, maximizing at 14 mg L-1 on day 7. In comparison, RBD titers peak at 54 mg L-1 on day 3. Next, we develop eight Spike truncations (T1-T8) in pursuit of truncation with high expression and antibody binding. The truncations T1 and T4 express at 130 and 73 mg L-1 , respectively, which are higher than our RBD titers. Purified proteins were evaluated for binding to antibodies raised against full-length Spike. T1 has similar sensitivity as Spike against a monoclonal antibody and even outperforms Spike for a polyclonal antibody. These results suggest that T1 is a promising Spike alternative for use in various applications.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Células CHO , Cricetinae , Cricetulus , Glicoproteína da Espícula de Coronavírus/genética
14.
Langmuir ; 38(24): 7545-7557, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35671406

RESUMO

Molecular dynamics (MD) simulations in the MARTINI model are used to study the assembly of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) molecules under spatial confinement, such as during solvent evaporation from ultrasmall (femtoliter quantity) droplets. The impact of surface polarity on molecular assembly is discussed in detail. To the best of our knowledge, this work represents the first of its kind. Our results reveal that solvent evaporation gives rise to the formation of well-defined stacks of lipid bilayers in a smectic alignment. These smectic mesophases form on both polar and nonpolar surfaces but with a notable distinction. On polar surfaces, the director of the stack is oriented perpendicular to the support surface. By contrast, the stacks orient at an angle on the nonpolar surfaces. The packing of head groups on surfaces and lipid molecular mobility exhibits significant differences as surface polarity changes. The role of glycerol in the assembly and stability is also revealed. The insights revealed from the simulation have a significant impact on additive manufacturing, biomaterials, model membranes, and engineering protocells. For example, POPC assemblies via evaporation of ultrasmall droplets were produced and characterized. The trends compare well with the bilayer stack models. The surface polarity influences the local morphology and structures at the interfaces, which could be rationalized via the molecule-surface interactions observed from simulations.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Solventes
15.
J Colloid Interface Sci ; 607(Pt 2): 1142-1152, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34571301

RESUMO

HYPOTHESIS: Delivery of multiple payloads using the same micelle is of significance to achieve multifunctional or synergistic effects. The interacting distribution of different payloads in micelles is expected to influence the loading stability and capacity. It is highly desirable to explore how intermolecular interactions affect the joint distribution of multi-payloads. EXPERIMENTS: Dissipative Particle Dynamics simulations were performed to probe the loading of three payloads: decane with a linear carbon chain, butylbenzene with an aromatic ring connected to carbon chain, and naphthalene with double aromatic rings, within poly(ß-amino ester)-b-poly(ethylene glycol) micelles. Properties of core-shell micelles, e.g., morphological evolution, radial density distribution, mean square displacement, and contact statistics, were analyzed to reveal payloads loading stability and capacity. Explorations were extended to vesicular, multi-compartment, double helix, and layer-by-layer micelles with more complex inner structures. FINDINGS: Different payloads have their own preferred locations. Decane locates at the hydrophilic/hydrophobic interface, butylbenzene occupies both the hydrophilic/hydrophobic interface and the hydrophobic core, while naphthalene enters the hydrophobic core. More efficient delivery of multi-payloads is achieved since the competition of payloads occupying preferred locations is minimized. The fusion of micelles encapsulating different payloads suggests that specific payloads will move to their preferred positions without interfering other payloads.


Assuntos
Micelas , Polímeros , Portadores de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis
16.
J Biomol Struct Dyn ; 40(22): 11977-11988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34424133

RESUMO

The recently discovered, membrane-active peptide LBF14 contains several non-proteinogenic amino acids and is able to transform vesicles into tubule networks. The exact membrane interaction mechanism and detailed secondary structure are yet to be determined. We performed molecular dynamics simulations of LBF14 and let it fold de novo into its ensemble of native secondary structures. Histidine protonation state effects on secondary structure were investigated. An MD simulation of the peptide with a lipid bilayer was performed. Simulation results were compared to circular dichroism and electron paramagnetic resonance data of previous studies. LBF14 contains a conserved helical section in an otherwise random structure. Helical stability is influenced by histidine protonation. The peptide localized to the polar layer of the membrane, consistent with experimental results. While the overall secondary structure is unaffected by membrane interaction, Ramachandran plot analysis yielded two distinct peptide conformations during membrane interaction. This conformational change was accompanied by residue repositioning within the membrane. LBF14 only affected the local order in the membrane, and had no measurable effect on pressure. The simulation results are consistent with the previously proposed membrane interaction mechanism of LBF14 and can additionally explain the local interaction mechanism. Communicated by Ramaswamy H. Sarma.


Assuntos
Histidina , Peptídeos , Histidina/química , Peptídeos/química , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Bicamadas Lipídicas/química
17.
Biophys J ; 121(1): 79-90, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34883069

RESUMO

Highly detailed steered molecular dynamics simulations are performed on differently glycosylated receptor binding domains of the severe acute respiratory syndrome coronavirus-2 spike protein. The binding strength and the binding range increase with glycosylation. The interaction energy rises very quickly when pulling the proteins apart and only slowly drops at larger distances. We see a catch-slip-type behavior whereby interactions during pulling break and are taken over by new interactions forming. The dominant interaction mode is hydrogen bonds, but Lennard-Jones and electrostatic interactions are relevant as well.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Dinâmica Molecular , Polissacarídeos , Ligação Proteica
18.
J Chem Theory Comput ; 17(12): 7313-7320, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34818006

RESUMO

Atomic vibrations can inform about materials properties from hole transport in organic semiconductors to correlated disorder in metal-organic frameworks. Currently, there are several methods for predicting these vibrations using simulations, but the accuracy-efficiency tradeoffs have not been examined in depth. In this study, rubrene is used as a model system to predict atomic vibrational properties using six different simulation methods: density functional theory, density functional tight binding, density functional tight binding with a Chebyshev polynomial-based correction, a trained machine learning model, a pretrained machine learning model called ANI-1, and a classical forcefield model. The accuracy of each method is evaluated by comparison to the experimental inelastic neutron scattering spectrum. All methods discussed here show some accuracy across a wide energy region, though the Chebyshev-corrected tight-binding method showed the optimal combination of high accuracy with low expense. We then offer broad simulation guidelines to yield efficient, accurate results for inelastic neutron scattering spectrum prediction.

19.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182608

RESUMO

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Assuntos
COVID-19 , Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
20.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181810

RESUMO

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Assuntos
Artemisia annua , Doenças Transmissíveis , Preparações Farmacêuticas , Animais , Humanos , Agricultura Molecular , Plantas Comestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...