Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 51(4): 741-750, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36138177

RESUMO

Respiratory tract dosimetry predictions for inhalation of tobacco product smoke and aerosols are sensitive to the values of the physicochemical properties of constituents that make up the puff. Physicochemical property values may change significantly with temperature, particularly in the oral cavity and upper airways of the lung, where the puff undergoes adjustments from high temperatures in the tobacco product to reach body temperature. The assumption of fixed property values may introduce uncertainties in the predicted doses in these and other airways of the lung. To obtain a bound for the uncertainties and improve dose predictions, we studied temperature evolution of the inhaled puff in the human respiratory tract during different puff inhalation events. Energy equations were developed for the transport of the puff in the respiratory tract and were solved to find air and droplet temperatures throughout the respiratory tract during two puffing scenarios: 1. direct inhalation of the puff into the lung with no pause in the oral cavity, and 2. puff withdrawal, mouth hold, and puff delivery to the lung via inhalation of dilution air. These puffing scenarios correspond to the majority of smoking scenarios. Model predictions showed that temperature effects were most significant during puff withdrawal. Otherwise, the puff reached thermal equilibrium with the body. Findings from this study will improve predictions of deposition and uptake of puff constituents, and therefore inform inhalation risk assessment from use of electronic nicotine delivery systems (ENDS) and combusted cigarettes.


Assuntos
Nicotiana , Produtos do Tabaco , Humanos , Nicotina , Temperatura , Fumaça/análise , Pulmão
2.
Circ Res ; 123(11): 1232-1243, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30571462

RESUMO

RATIONALE: Protein S-nitros(yl)ation (SNO) has been implicated as an essential mediator of nitric oxide-dependent cardioprotection. Compared with males, female hearts exhibit higher baseline levels of protein SNO and associated with this, reduced susceptibility to myocardial ischemia-reperfusion injury. Female hearts also exhibit enhanced S-nitrosoglutathione reductase (GSNO-R) activity, which would typically favor decreased SNO levels as GSNO-R mediates SNO catabolism. OBJECTIVE: Because female hearts exhibit higher SNO levels, we hypothesized that GSNO-R is an essential component of sex-dependent cardioprotection in females. METHODS AND RESULTS: Male and female wild-type mouse hearts were subjected to ex vivo ischemia-reperfusion injury with or without GSNO-R inhibition (N6022). Control female hearts exhibited enhanced functional recovery and decreased infarct size versus control males. Interestingly, GSNO-R inhibition reversed this sex disparity, significantly reducing injury in male hearts, and exacerbating injury in females. Similar results were obtained with male and female GSNO-R-/- hearts using ex vivo and in vivo models of ischemia-reperfusion injury. Assessment of SNO levels using SNO-resin assisted capture revealed an increase in total SNO levels with GSNO-R inhibition in males, whereas total SNO levels remained unchanged in females. However, we found that although GSNO-R inhibition significantly increased SNO at the cardioprotective Cys39 residue of nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 3 in males, SNO-NADH dehydrogenase subunit 3 levels were surprisingly reduced in N6022-treated female hearts. Because GSNO-R also acts as a formaldehyde dehydrogenase, we examined postischemic formaldehyde levels and found that they were nearly 2-fold higher in N6022-treated female hearts compared with nontreated hearts. Importantly, the mitochondrial aldehyde dehydrogenase 2 activator, Alda-1, rescued the phenotype in GSNO-R-/- female hearts, significantly reducing infarct size. CONCLUSIONS: These striking findings point to GSNO-R as a critical sex-dependent mediator of myocardial protein SNO and formaldehyde levels and further suggest that different therapeutic strategies may be required to combat ischemic heart disease in males and females.


Assuntos
Álcool Desidrogenase/metabolismo , Coração/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Álcool Desidrogenase/antagonistas & inibidores , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Estresse Oxidativo , Pirróis/farmacologia , Pirróis/uso terapêutico , Fatores Sexuais
3.
Am J Physiol Heart Circ Physiol ; 310(4): H505-15, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26702143

RESUMO

Premenopausal women exhibit endogenous cardioprotective signaling mechanisms that are thought to result from the beneficial effects of estrogen, which we have shown to increase protein S-nitrosylation in the heart. S-nitrosylation is a labile protein modification that increases with a number of different forms of cardioprotection, including ischemic preconditioning. Herein, we sought to identify a potential role for protein S-nitrosylation in sex-dependent cardioprotection. We utilized a Langendorff-perfused mouse heart model of ischemia-reperfusion injury with male and female hearts, and S-nitrosylation-resin-assisted capture with liquid chromatography tandem mass spectrometry to identify S-nitrosylated proteins and modification sites. Consistent with previous studies, female hearts exhibited resilience to injury with a significant increase in functional recovery compared with male hearts. In a separate set of hearts, we identified a total of 177 S-nitrosylated proteins in female hearts at baseline compared with 109 S-nitrosylated proteins in male hearts. Unique S-nitrosylated proteins in the female group included the F1FO-ATPase and cyclophilin D. We also utilized label-free peptide analysis to quantify levels of common S-nitrosylated identifications and noted that the S-nitrosylation of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2a was nearly 70% lower in male hearts compared with female, with no difference in expression. Furthermore, we found a significant increase in endothelial nitric oxide synthase expression, phosphorylation, and total nitric oxide production in female hearts compared with males, likely accounting for the enhanced S-nitrosylation protein levels in female hearts. In conclusion, we identified a number of novel S-nitrosylated proteins in female hearts that are likely to contribute to sex-dependent cardioprotection.


Assuntos
Circulação Coronária/efeitos dos fármacos , Coração/efeitos dos fármacos , Proteoma/efeitos dos fármacos , S-Nitrosotióis/metabolismo , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Fosforilação , Caracteres Sexuais
4.
Am J Respir Cell Mol Biol ; 54(4): 504-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26390063

RESUMO

Cigarette smoke (CS) exposure is the leading cause of emphysema. CS mediates pathologic emphysematous remodeling of the lung via apoptosis of lung parenchymal cells resulting in enlargement of the airspaces, loss of the capillary bed, and diminished surface area for gas exchange. Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, is reduced both in a preclinical model of CS-induced emphysema and in patients with chronic obstructive pulmonary disease, particularly those with the most severe disease and emphysematous phenotype. MIF functions to antagonize CS-induced DNA damage, p53-dependent apoptosis of pulmonary endothelial cells (EndoCs) and resultant emphysematous tissue remodeling. Using primary alveolar EndoCs and a mouse model of CS-induced lung damage, we investigated the capacity and molecular mechanism(s) by which MIF modifies oxidant injury. Here, we demonstrate that both the activity of xanthine oxidoreductase (XOR), a superoxide-generating enzyme obligatory for CS-induced DNA damage and EndoC apoptosis, and superoxide concentrations are increased after CS exposure in the absence of MIF. Both XOR hyperactivation and apoptosis in the absence of MIF occurred via a p38 mitogen-activated protein kinase-dependent mechanism. Furthermore, a mitogen-activated protein kinase kinase kinase family member, apoptosis signal-regulating kinase 1 (ASK1), was necessary for CS-induced p38 activation and EndoC apoptosis. MIF was sufficient to directly suppress ASK1 enzymatic activity. Taken together, MIF suppresses CS-mediated cytotoxicity in the lung, in part by antagonizing ASK1-p38-XOR-dependent apoptosis.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5/metabolismo , Fatores Inibidores da Migração de Macrófagos/fisiologia , Fumaça , Xantina Desidrogenase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Humanos , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Espécies Reativas de Oxigênio/metabolismo , Nicotiana
5.
PLoS One ; 10(4): e0124189, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25831123

RESUMO

BACKGROUND: Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown. METHODS AND RESULTS: Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif. CONCLUSIONS AND SIGNIFICANCE: These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury.


Assuntos
Hipóxia Celular/fisiologia , Quinase 5 Dependente de Ciclina/metabolismo , Fosfotransferases/metabolismo , Xantina Desidrogenase/metabolismo , Animais , Linhagem Celular , Quinase 5 Dependente de Ciclina/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Pulmão/metabolismo , Fosfotransferases/genética , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno , Ratos , Espécies Reativas de Oxigênio/metabolismo
6.
J Vis Exp ; (95): 52376, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25651276

RESUMO

In recent decades the mouse has become the primary animal model of a variety of lung diseases. In models of emphysema or fibrosis, the essential phenotypic changes are best assessed by measurement of the changes in lung elasticity. To best understand specific mechanisms underlying such pathologies in mice, it is essential to make functional measurements that can reflect the developing pathology. Although there are many ways to measure elasticity, the classical method is that of the total lung pressure-volume (PV) curve done over the whole range of lung volumes. This measurement has been made on adult lungs from nearly all mammalian species dating back almost 100 years, and such PV curves also played a major role in the discovery and understanding of the function of pulmonary surfactant in fetal lung development. Unfortunately, such total PV curves have not been widely reported in the mouse, despite the fact that they can provide useful information on the macroscopic effects of structural changes in the lung. Although partial PV curves measuring just the changes in lung volume are sometimes reported, without a measure of absolute volume, the nonlinear nature of the total PV curve makes these partial ones very difficult to interpret. In the present study, we describe a standardized way to measure the total PV curve. We have then tested the ability of these curves to detect changes in mouse lung structure in two common lung pathologies, emphysema and fibrosis. Results showed significant changes in several variables consistent with expected structural changes with these pathologies. This measurement of the lung PV curve in mice thus provides a straightforward means to monitor the progression of the pathophysiologic changes over time and the potential effect of therapeutic procedures.


Assuntos
Pneumopatias/fisiopatologia , Medidas de Volume Pulmonar/métodos , Pulmão/fisiologia , Animais , Modelos Animais de Doenças , Enfisema/diagnóstico , Enfisema/fisiopatologia , Feminino , Pneumopatias/diagnóstico , Masculino , Camundongos , Fibrose Pulmonar/diagnóstico , Fibrose Pulmonar/fisiopatologia , Suínos
7.
J Vis Exp ; (95): e52216, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25590416

RESUMO

The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.


Assuntos
Pneumopatias/diagnóstico , Pneumopatias/fisiopatologia , Capacidade de Difusão Pulmonar , Testes de Função Respiratória/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
8.
Am J Respir Cell Mol Biol ; 51(1): 94-103, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24490973

RESUMO

Cigarette smoke (CS) is the most common cause of chronic obstructive pulmonary diseases (COPD), including emphysema. CS exposure impacts all cell types within the airways and lung parenchyma, causing alveolar tissue destruction through four mechanisms: (1) oxidative stress; (2) inflammation; (3) protease-induced degradation of the extracellular matrix; and (4) enhanced alveolar epithelial and endothelial cell (EC) apoptosis. Studies in human pulmonary ECs demonstrate that macrophage migration inhibitory factor (MIF) antagonizes CS-induced apoptosis. Here, we used human microvascular ECs, an animal model of emphysema (mice challenged with chronic CS), and patient serum samples to address both the capacity of CS to alter MIF expression and the effects of MIF on disease severity. We demonstrate significantly reduced serum MIF levels in patients with COPD. In the murine model, chronic CS exposure resulted in decreased MIF mRNA and protein expression in the intact lung. MIF deficiency (Mif(-/-)) potentiated the toxicity of CS exposure in vivo via increased apoptosis of ECs, resulting in enhanced CS-induced tissue remodeling. This was linked to MIF's capacity to protect against double-stranded DNA damage and suppress p53 expression. Taken together, MIF appears to antagonize CS-induced toxicity in the lung and resultant emphysematous tissue remodeling by suppressing EC DNA damage and controlling p53-mediated apoptosis, highlighting a critical role of MIF in EC homeostasis within the lung.


Assuntos
Dano ao DNA/efeitos dos fármacos , Oxirredutases Intramoleculares/fisiologia , Pulmão/patologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/etiologia , Fumaça/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Técnicas Imunoenzimáticas , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Proteína Supressora de Tumor p53/metabolismo
9.
Am J Respir Cell Mol Biol ; 50(3): 538-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24102120

RESUMO

Approximately 3 billion people-half the worldwide population-are exposed to extremely high concentrations of household air pollution due to the burning of biomass fuels on inefficient cookstoves, accounting for 4 million annual deaths globally. Yet, our understanding of the pulmonary responses to household air pollution exposure and the underlying molecular and cellular events is limited. The two most prevalent biomass fuels in India are wood and cow dung, and typical 24-hour mean particulate matter (PM) concentrations in homes that use these fuels are 300 to 5,000 µg/m(3). We dissected the mechanisms of pulmonary responses in mice after acute or subchronic exposure to wood or cow dung PM collected from rural Indian homes during biomass cooking. Acute exposures resulted in robust proinflammatory cytokine production, neutrophilic inflammation, airway resistance, and hyperresponsiveness, all of which were significantly higher in mice exposed to PM from cow dung. On the contrary, subchronic exposures induced eosinophilic inflammation, PM-specific antibody responses, and alveolar destruction that was highest in wood PM-exposed mice. To understand the molecular pathways that trigger biomass PM-induced inflammation, we exposed Toll-like receptor (TLR)2-, TLR3-, TLR4-, TLR5-, and IL-1R-deficient mice to PM and found that IL-1R, TLR4, and TLR2 are the predominant receptors that elicit inflammatory responses via MyD88 in mice exposed to wood or cow dung PM. In conclusion, this study demonstrates that subchronic exposure to PM collected from households burning biomass fuel elicits a persistent pulmonary inflammation largely through activation of TLR and IL-1R pathways, which could increase the risk for chronic respiratory diseases.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Biomassa , Culinária , Fontes Geradoras de Energia , Fezes , Habitação , Pulmão/efeitos dos fármacos , Pneumonia/induzido quimicamente , Madeira/efeitos adversos , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Exposição por Inalação/efeitos adversos , Pulmão/imunologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Pneumonia/imunologia , Pneumonia/fisiopatologia , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Fatores de Tempo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
10.
Ann Biomed Eng ; 36(12): 2111-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18633711

RESUMO

Lung parenchyma is normally considered to be isotropic, that is, its properties do not depend upon specific preferential directions. The assumption of isotropy is important for both modeling of lung mechanical properties and quantitative histologic measurements. This assumption, however, has not been previously examined at the microscopic level, in part because of the difficulty in large lungs of obtaining sufficient numbers of small samples of tissue while maintaining the spatial orientation. In the mouse, however, this difficulty is minimized. We evaluated the parenchymal isotropy in mouse lungs by quantifying the mean airspace chord lengths (Lm) from high-resolution histology of complete sections surrounded by an intact continuous visceral pleural membrane. We partitioned this lung into 5 isolated regions, defined by the distance from the visceral pleura. To further evaluate the isotropy, we also measured Lm in two orthogonal spatial directions with respect to the section orientation, and varied the sample line spacing from 3 to 280 microm. Results show a striking degree of parenchymal anisotropy in normal mouse lungs. The Lm was significantly greater when grid lines were parallel to the ventral-dorsal axis of the tissue. In addition the Lm was significantly smaller within 300 microm of the visceral pleura. Whether this anisotropy results from intrinsic structural factors or from nonuniform shrinkage during conventional tissue processing is uncertain, but it should be considered when interpreting quantitative morphometric measurements made in the mouse lung.


Assuntos
Pulmão/fisiologia , Animais , Anisotropia , Imuno-Histoquímica , Indicadores e Reagentes/metabolismo , Pulmão/anatomia & histologia , Medidas de Volume Pulmonar/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Corantes de Rosanilina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...