Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(9): 7534-7544, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357967

RESUMO

The quantum dynamics of vibrational polaritonic states arising from the interaction of a bistable molecule with the quantized mode of a Fabry-Perot microcavity is investigated using a generic asymmetric double-well potential as a simplified one-dimensional model of a reactive molecule. After discussing the role of the light-matter coupling strength in the emergence of avoided crossings between polaritonic states, we investigate the possibility of using these crossings to trigger a dynamical switching of these states from one potential well to the other. Two schemes are proposed to achieve this coherent state switching, either by preparing the molecule in an appropriate vibrational excited state before inserting it into the cavity, or by applying a short laser pulse inside the cavity to obtain a coherent superposition of polaritonic states. The respective influences of dipole moment amplitude and potential asymmetry on the coherent switching process are also discussed.

2.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38270236

RESUMO

The quantum dynamics of a low-dimensional system in contact with a large but finite harmonic bath is theoretically investigated by coarse-graining the bath into a reduced set of effective energy states. In this model, the couplings between the system and the bath are obtained from statistically averaging over the discrete, degenerate effective states. Our model is aimed at intermediate bath sizes in which non-Markovian processes and energy transfer between the bath and the main system are important. The method is applied to a model system of a Morse oscillator coupled to 40 harmonic modes. The results are found to be in excellent agreement with the direct quantum dynamics simulations presented in the work of Bouakline et al. [J. Phys. Chem. A 116, 11118-11127 (2012)], but at a much lower computational cost. Extension to larger baths is discussed in comparison to the time-convolutionless method. We also extend this study to the case of a microcanonical bath with finite initial internal energies. The computational efficiency and convergence properties of the effective bath states model with respect to relevant parameters are also discussed.

3.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578061

RESUMO

In this article, we present a simulation study of the linear and nonlinear spectroscopy of dense atomic vapors. Motivated by recent experiments, we focus on double quantum spectroscopy, which directly probes dipole-dipole interactions. By explicitly including thermal velocity, we show that temperature has an important impact on the self-broadening mechanisms of the linear and nonlinear spectra. We also provide analytical expressions for the response functions in the short time limit using the two-body approximation, which shows that double quantum spectroscopy for atomic vapors directly probes the transition amplitude of the electronic excitation between two atoms. We also propose an expression for the double quantum spectrum that includes the effect of Doppler broadening, and we discuss the effect of density on the spectrum. We show that when Doppler broadening is negligible compared to self-broadening, the double quantum spectrum scales with the atomic density, while when Doppler broadening dominates, it scales as the square of the density.

4.
J Chem Phys ; 157(17): 171102, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347671

RESUMO

The effects of a finite temperature on the equilibrium structures of hydrocarbon molecules are computationally explored as a function of size and relative chemical composition in hydrogen and carbon. Using parallel tempering Monte Carlo simulations employing a reactive force field, we find that in addition to the phases already known for pure carbon, namely, cages, flakes, rings, and branched structures, strong changes due to temperature and the addition of little amounts of hydrogen are reported. Both entropy and the addition of moderate amounts of hydrogen favor planar structures such as nanoribbons over fullerenes. Accurate phase diagrams are proposed, highlighting the possible presence of multiple phase changes at finite size and composition. Astrophysical implications are also discussed.

5.
J Phys Chem A ; 125(25): 5509-5518, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138562

RESUMO

Carbon clusters exhibit a broad diversity of topologies and shapes, encompassing fullerene-like cages, graphene-like flakes, and more disordered pretzel-like and branched structures. Here, we examine computationally their infrared spectra in relation with these structures from a statistical perspective. Individual spectra for broad samples of isomers were determined by means of the self-consistent charge density functional-based tight-binding method, and an interpolation scheme is designed to reproduce the spectral features by regression on a much smaller subset of the sample. This interpolation proceeds by encoding the structures using appropriate descriptors and selecting them through principal component analysis, Gaussian regression or inverse distance weighting providing the nonlinear weighting functions. Metric learning is employed to reduce the global error on a preselected testing set. The interpolated spectra satisfactorily reproduce the specific spectral features and their dependence on the size and shape, enabling quantitative prediction away from the testing set. Finally, the classification of structures within the four proposed families is critically discussed through a statistical analysis of the sample based on iterative label spreading.

8.
J Chem Phys ; 149(14): 144102, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30316271

RESUMO

While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non-zero vibrational temperatures. Motivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all infrared transitions including bands becoming active due to resonances as well as overtone, combination, and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C16H10) and coronene (C24H12), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic density functional theory calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step toward calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.

9.
J Chem Phys ; 149(7): 072334, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134728

RESUMO

Isomerization kinetics of molecules in the gas phase naturally falls on the microcanonical ensemble of statistical mechanics, which for small systems might significantly differ from the more traditional canonical ensemble. In this work, we explore the examples of cis-trans isomerization in butane and bibenzyl and to what extent the fully atomistic rate constants in isolated molecules can be reproduced by coarse-graining the system into a lower dimensional potential of mean force (PMF) along a reaction coordinate of interest, the orthogonal degrees of freedom acting as a canonical bath in a Langevin description. Time independent microcanonical rate constants can be properly defined from appropriate state residence time correlation functions; however, the resulting rate constants acquire some time dependence upon canonical averaging of initial conditions. Stationary rate constants are recovered once the molecule is placed into a real condensed environment pertaining to the canonical ensemble. The effective one-dimensional kinetics along the PMF, based on appropriately chosen inertia and damping parameters, quantitatively reproduces the atomistic rate constants at short times but deviates systematically over long times owing to the neglect of some couplings between the system and the bath that are all intrinsically present in the atomistic treatment. In bibenzyl, where stronger temperature effects are noted than in butane, the effective Langevin dynamics along the PMF still performs well at short times, indicating the potential interest of this extremely simplified approach for sampling high-dimensional energy surfaces and evaluating reaction rate constants.

10.
J Chem Phys ; 148(7): 074103, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29471642

RESUMO

The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and ß-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

11.
Phys Rev E ; 96(2-1): 022304, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950469

RESUMO

A method combining perturbation theory with a simplifying ansatz is used to describe the exciton-phonon dynamics in complex networks. This method, called PT^{*}, is compared to exact calculations based on the numerical diagonalization of the exciton-phonon Hamiltonian for eight small-sized networks. It is shown that the accuracy of PT^{*} depends on the nature of the network, and three different situations were identified. For most graphs, PT^{*} yields a very accurate description of the dynamics. By contrast, for the Wheel graph and the Apollonian network, PT^{*} reproduces the dynamics only when the exciton occupies a specific initial state. Finally, for the complete graph, PT^{*} breaks down. These different behaviors originate in the interplay between the degenerate nature of the excitonic energy spectrum and the strength of the exciton-phonon interaction so that a criterion is established to determine whether or not PT^{*} is relevant. When it succeeds, our study shows the undeniable advantage of PT^{*} in that it allows us to perform very fast simulations when compared to exact calculations that are restricted to small-sized networks.

12.
J Chem Phys ; 147(1): 013908, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688448

RESUMO

We present the photoelectron spectroscopy of four radical species, CHxCN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH3CN (CHxCN + F → CHx-1CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H2CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H2CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X+ 1A1←X 2B1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN+, CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (ΔfH2980(HCCN+(X2A'))=1517±12kJmol-1,ΔfH2980(CCN(X2Π))=682±13kJmol-1, and ΔfH2980(CNC(X2Πg))=676±12kJmol-1), which are of fundamental importance for astrochemistry.

13.
J Chem Phys ; 145(5): 054108, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27497540

RESUMO

We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the "surfaces" for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Hemeproteínas/química , Simulação de Dinâmica Molecular , Fotólise , Teoria Quântica , Vibração , Histidina Quinase
14.
J Chem Phys ; 144(23): 234103, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334150

RESUMO

This article presents a new approximation to understand the connection between the center of line slope from a single peak of a two-dimensional (2D) infrared spectrum and the frequency-frequency correlation function. This approximation which goes beyond the short-time approximation includes explicitly pure dephasing mechanisms by introducing a time parameter that separates the fast fluctuations and slow fluctuations. While in the short-time approximation, the center of line slope is given by the normalized frequency fluctuations auto-correlation function, I show using this new approximation that the center of line slope measures on long time scales a shifted and scaled correlation function. The results present a new interpretation of the meaning of the center of line slope that allows for a better understanding of what 2D experiments can measure. To illustrate these findings, I compare this approximation with the short-time approximation for several examples of frequency-frequency correlation functions. I also give an estimate of the value of the time separation parameter for a correlation function with a simple exponential decay.

15.
J Phys Chem Lett ; 6(12): 2216-22, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26266594

RESUMO

This Letter presents a comparison between experimental and simulated 2D mid-infrared spectra of carboxy-hemoglobin in the spectral region of the carbon monoxide stretching mode. The simulations rely on a fluctuating potential energy surface that includes both the effect of heme and the protein surroundings computed from molecular dynamics simulations. A very good agreement between theory and experiment is obtained with no adjustable parameters. The simulations show that the effect of the distal histidine through the hydrogen bond is strong and is directly responsible for the slow decay of the frequency-frequency correlation function on a 10 ps time scale. This study confirms that fluctuations in carboxy-hemoglobin are more inhomogeneous than those in the more frequently studied carboxy-myoglobin. The comparison between simulations and experiments brings valuable information on the complex relation between protein structure and spectral diffusion.


Assuntos
Simulação de Dinâmica Molecular , Mioglobina/química , Espectrofotometria Infravermelho , Óxido de Deutério/química , Difusão , Humanos , Mioglobina/metabolismo
16.
J Chem Phys ; 141(16): 164325, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362317

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

17.
J Phys Chem A ; 117(48): 12884-8, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24180304

RESUMO

We present simulations of the excitation of specific vibrational levels of the CO stretch in carboxyhemoglobin by shaped mid-IR laser pulses. The pulses are calculated using local control theory, adapted to account for the protein fluctuations, which are included using a microscopic model developed previously. We show that efficient selective vibrational state preparation can be obtained, despite the presence of the fluctuations and orientational averaging, and can be monitored using transient absorption spectra. The mid-IR pulses are found to be in a realistic intensity regime and might soon be available by IR pulse shaping. This opens the way to a direct monitoring of vibrational relaxation from individually prepared, high-lying vibrational states of complex systems.

18.
J Phys Chem A ; 117(50): 13664-72, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24117136

RESUMO

The electronic absorption spectra of the two methyl derivatives of the naphthalene cation were measured using an argon tagging technique. In both cases, a band system was observed in the visible range and assigned to the D2 ← D0 electronic transition. The 1-methylnaphthalene(+) absorption bands revealed a red shift of 808 cm(-1), relative to those of the naphthalene cation (14,906 cm(-1)), whereas for 2-methylnaphthalene(+) a blue shift of 226 cm(-1) appeared. A short vibrational progression, similar to the naphthalene cation, was also observed for both isomers and found to involve similar aromatic ring skeleton vibrations. Moreover, insights into the internal rotation motion of the methyl group were inferred, although the spectral resolution was not sufficient to fully resolve the substructure. These measurements were supported by detailed quantum chemical calculations. They allowed exploration of the potential energy curves along this internal coordinate, along with a complete simulation of the harmonic Franck-Condon factors using the cumulant Gaussian fluctuations formalism extended to include the internal rotation.


Assuntos
Lasers , Modelos Moleculares , Naftalenos/química , Análise Espectral , Conformação Molecular
19.
Phys Chem Chem Phys ; 15(25): 10241-50, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23552801

RESUMO

The IR emission spectroscopy of naphthalene and its singly- and doubly-dehydrogenated radicals has been modeled using kinetic Monte Carlo simulations, taking into account the various relaxation pathways of radiative emission and hydrogen loss. Our modeling relies on quantum chemistry ingredients that were obtained from dedicated calculations based on density functional theory, including explicitly anharmonicity contributions. Our results show that the fragmentation products significantly contribute to the overall IR emission spectrum, especially to the intensity ratios between bands. Owing to the likely presence of polycyclic aromatic hydrocarbons in the interstellar medium, these findings are particularly relevant in the astrophysical context.

20.
J Chem Phys ; 138(3): 034305, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23343274

RESUMO

An explicit polarizable potential for the naphthalene-argon complex has been derived assuming only atomic contributions, aiming at large scale simulations of naphthalene under argon environment. The potential was parametrized from dedicated quantum chemical calculations at the CCSD(T) level, and satisfactorily reproduces available structural and energetic properties. Combining this potential with a tight-binding model for naphthalene, collisional energy transfer is studied by means of dedicated molecular dynamics simulations, nuclear quantum effects being accounted for in the path-integral framework. Except at low target temperature, nuclear quantum effects do not alter the average energies transferred by the collision or the collision duration. However, the distribution of energy transferred is much broader in the quantum case due to the significant zero-point energy and the higher density of states. Using an ab initio potential for the Ar-Ar interaction, the IR absorption spectrum of naphthalene solvated by argon clusters or an entire Ar matrix is computed via classical and centroid molecular dynamics. The classical spectra exhibit variations with growing argon environment that are absent from quantum spectra. This is interpreted by the greater fluxional character experienced by the argon atoms due to vibrational delocalization.


Assuntos
Argônio/química , Naftalenos/química , Transferência de Energia , Teoria Quântica , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...