Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134296, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643574

RESUMO

The effective removal of viruses from swine wastewater using anaerobic membrane bioreactor (AnMBR) is vital to ecological safety. However, most studies have focused only on disinfectants, whereas the capabilities of the treatment process have not been investigated. In this study, the performance and mechanism of an AnMBR in the removal of porcine hepatitis E virus (HEV), porcine kobuvirus (PKoV), porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV) are systematically investigated. The results show that the AnMBR effectively removes the four viruses, with average removal efficiencies of 1.62, 3.05, 2.41, and 1.34 log for HEV, PKoV, PEDV and TGEV, respectively. Biomass adsorption contributes primarily to the total virus removal in the initial stage of reactor operation, with contributions to HEV and PKoV removal exceeding 71.7 % and 68.2 %, respectively. When the membrane is fouled, membrane rejection dominated virus removal. The membrane rejection contribution test shows the significant contribution of membrane pore foulants (23-76 %). Correlation analysis shows that the surface characteristics and size differences of the four viruses contribute primarily to their different effects on biomass adsorption and membrane rejection. This study provides technical guidance for viral removal during the treatment of high-concentration swine wastewater using an AnMBR.


Assuntos
Reatores Biológicos , Membranas Artificiais , Águas Residuárias , Animais , Águas Residuárias/virologia , Suínos , Anaerobiose , Vírus de RNA/isolamento & purificação , Purificação da Água/métodos , Adsorção , Biomassa , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos
2.
J Sci Food Agric ; 104(11): 6594-6604, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520293

RESUMO

BACKGROUND: The rapid and accurate detection of moisture content is important to ensure maize quality. However, existing technologies for rapidly detecting moisture content often suffer from the use of costly equipment, stringent environmental requirements, or limited accuracy. This study proposes a simple and effective method for detecting the moisture content of single maize kernels based on viscoelastic properties. RESULTS: Two types of viscoelastic experiments were conducted involving three different parameters: relaxation tests (initial loads: 60, 80, 100 N) and frequency-sweep tests (frequencies: 0.6, 0.8, 1 Hz). These experiments generated corresponding force-time graphs and viscoelastic parameters were extracted based on the four-element Maxwell model. Then, viscoelastic parameters and data of force-time graphs were employed as input variables to explore the relationships with moisture content separately. The impact of different preprocessing methods and feature time variables on model accuracy was explored based on force-time graphs. The results indicate that models utilizing the force-time data were more accurate than those utilizing viscoelastic parameters. The best model was established by partial least squares regression based on S-G smoothing data from relaxation tests conducted with initial force of 100 N. The correlation coefficient and the root mean square error of the calibration set were 0.954 and 0.021, respectively. The corresponding values of the prediction set were 0.905 and 0.029, respectively. CONCLUSIONS: This study confirms the potential for accurate and fast detection of moisture content in single maize kernels using viscoelastic properties, which provides a novel approach for the detection of various components in cereals. © 2024 Society of Chemical Industry.


Assuntos
Elasticidade , Sementes , Água , Zea mays , Zea mays/química , Viscosidade , Água/análise , Sementes/química
3.
Neuroscience ; 526: 74-84, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37290685

RESUMO

Ischemic stroke is one of the main causes of serious disability and death worldwide. NLRP3 inflammasome is an intracellular pattern recognition receptor composed of polyprotein complex, which participates in mediating a series of inflammatory responses and is considered as a potential target for the treatment of ischemic stroke. Vinpocetine, a derivative of vincamine, has been widely used in the prevention and treatment of ischemic stroke. However, the therapeutic mechanism of vinpocetine is not clear, and its effect on NLRP3 inflammasome remains to be determined. In this study, we used the mouse model of transient middle cerebral artery occlusion (tMCAO) to simulate the occurrence of ischemic stroke. Different doses of vinpocetine (5, 10, 15 mg/kg/d) were injected intraperitoneally for 3 days after ischemia-reperfusion in mice. The effects of different doses of vinpocetine on the degree of ischemia-reperfusion injury in mice were observed by TTC staining and modified neurological severity score scale, and the optimal dose was determined. Then, based on this optimal dose, we observed the effects of vinpocetine on apoptosis, microglial proliferation and NLRP3 inflammasome. In addition, we compared the effects of vinpocetine and MCC950 (a specific inhibitor of NLRP3 inflammasome) on NLRP3 inflammasome. Our results show that vinpocetine can effectively reduce the infarct volume and promote the recovery of behavioral function in stroke mice, and the maximal beneficial effects were observed at the dose of 10 mg/kg/d. Vinpocetine can effectively inhibit the apoptosis of peri-infarct neurons, promote the expression of Bcl-2, inhibit the expression of Bax and Cleaved Caspase-3, and reduce the proliferation of peri-infarct microglia. In addition, vinpocetine, like MCC950, can reduce the expression of NLRP3 inflammasome. Therefore, vinpocetine can effectively alleviate the ischemia-reperfusion injury in mice, and the inhibition of NLRP3 inflammasome may be an important therapeutic mechanism of vinpocetine.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Sulfonamidas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
4.
Proteome Sci ; 19(1): 14, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758830

RESUMO

BACKGROUD: Streptococcus agalactiae is a common colonizer of the rectovaginal tract and lead to infectious diseases of neonatal and non-pregnant adults, which also causes infectious disease in fish and a zoonotic risk as well. Lysine crotonylation (Kcr) is a kind of histone post-translational modifications discovered in 2011. In yeast and mammals, Kcr function as potential enhancers and promote gene expression. However, lysine crotonylation in S. agalactiae has not been studied yet. METHODS: In this study, the crotonylation profiling of fish pathogen, S. agalactiae was investigated by combining affinity enrichment with LC MS/MS. The Kcr modification of several selected proteins were further validated by Western blotting. RESULTS: In the present study, we conducted the proteome-wide profiling of Kcr in S. agalactiae and identified 241 Kcr sites from 675 screened proteins for the first time. Bioinformatics analysis showed that 164 sequences were matched to a total of six definitively conserved motifs, and many of them were significantly enriched in metabolic processes, cellular process, and single-organism processes. Moreover, four crotonylation modified proteins were predicted as virulence factors or to being part of the quorum sensing system PTMs on bacteria. The data are available via ProteomeXchange with identifier PXD026445. CONCLUSIONS: These data provide a promising starting point for further functional research of crotonylation in bacterial virulence in S. agalactiae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...