Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2401702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569463

RESUMO

Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H2) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H2 production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg2+, Ca2+, and Cl- ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H2 sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm2) continuously produces H2 from flowing seawater with a rate of 7.5 mL min-1 at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm-3 H2 at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.

2.
iScience ; 27(2): 108996, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327796

RESUMO

Fenton or Fenton-like reactions have been widely used in various fields, including solar energy conversion to generate hydroxyl radicals, environmental remediation, biology, and life science. However, the slow Fe3+/Fe2+ cycle and narrow applicable pH range still present significant challenges. Here, a heterostructured CoFe-layered double hydroxide/MoS2 nanocomposite (CoFe-LDH/MoS2) was prepared via simple electrostatic interactions. The heterostructure establishes a robust interfacial contact, leading to an abundance of exposed Mo6+ sites. Consequently, the developed CoFe-LDH/MoS2+H2O2 system exhibited superior performance in the degradation of tetracycline (>85%) within 60 min across a wide pH range from acidic to basic. Moreover, the CoFe-LDH/MoS2 heterojunction catalysts exhibited exceptional resistance to common anions and efficiently degraded various organic pollutants. The mechanism study verified that the CoFe-LDH/MoS2 had high efficiency in producing 1O2 and ‧OH to degrade various organic pollutants. The present study will serve as a foundation for creating efficient catalyst systems for related environmental remediation.

3.
ACS Omega ; 4(6): 10151-10159, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460107

RESUMO

Both the particle size and compositions have a strong influence on the UV-shielding performance of layered double hydroxides (LDHs), and they will interact with each other. To investigate the effects of divalent metal ions on the UV-shielding properties of layered double hydroxides (LDHs), MII/MgAl-CO3 LDHs (M = Mg, Co, Ni, Cu, or Zn) with the same primary and secondary particle size have been prepared and their UV-shielding performance have been studied in this work. The UV-vis spectra show that the ZnMgAl-LDHs exhibit the highest absorbance under the ultraviolet B and ultraviolet A rays among these LDH samples, but in the ultraviolet C region, the CuMgAl-LDHs show the highest absorbance and this result is in good accordance with the UV-shielding performance, which was examined by protecting the photocatalytic degradation of rhodamine B aqueous solution. Moreover, under UV rays, PP/ZnMgAl-LDH films show excellent resistance to UV aging, which can be attributed to the strong inhibition of ZnMgAl-LDHs during the production of free radicals in polypropene, as has been confirmed by electron spin resonance results.

4.
Dalton Trans ; 47(43): 15331-15337, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30207336

RESUMO

The loading of noble-metal nanoparticles (NPs) is an effective approach for the enhancement of H2 sensing performances, although there have been rare reports focused on the effect of the facets of noble-metal nanoparticles in the H2 sensing performance. The catalytic and adsorption performance of noble-metal nanocrystals is mainly determined by their exposed facets, while the gas sensing performance of sensors is strongly correlated to the adsorption and reaction between the gases and sensor materials. Hence, it is very important to study the gas sensing performance of the different facets-exposed noble-metal nanoparticles. In this study, a set of shape-controlled Pd NPs have been prepared and loaded onto the ZnO nanorods, and the gas sensing performance of the Pd nanoparticle-loaded ZnO to 250 ppm of H2 has been detected. The results indicate that the cubic Pd NPs-loaded ZnO shows higher and faster sensing response to H2 than the octahedral and spherical Pd-loaded ZnO owing to the stronger adsorption of the H2 by cubic Pd NPs enclosed by (100) facets than the octahedral NPs enclosed by (111) facets. The cubic Pd NPs-loaded ZnO also exhibits better sensing selectivity and repeatability towards H2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...