Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 10(1): 998-1006, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26730851

RESUMO

Self-assembled aggregates offer great potential for tuning the morphology of organic semiconductors, thereby controlling their size and shape. This is particularly interesting for applications in electroluminescent (EL) devices, but there has been, to date, no reports of a functional EL device in which the size and color of the emissive domains could be controlled using self-assembly. We now report a series of molecules that spontaneously self-organize into small EL domains of sub-micrometer dimensions. By tailoring the emissive chromophores in solution, spherical aggregates that have an average size of 300 nm in diameter and emit any one color, including CIE D65 white, are spontaneously formed in solution. We show that the individual aggregates can be used in EL devices built either using small patterned electrodes or using a sandwich architecture to produce devices emitting in the blue, green, red, and white. Furthermore, sequential deposition of the three primary colors yields an RGB device in which single aggregates of each color are present in close proximity.

2.
ACS Appl Mater Interfaces ; 7(44): 24973-81, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26486176

RESUMO

Thermal curing of the styrene-functionalized 9,9-diarylfluorene-based triaryldiamine monomer (VB-DAAF) forms an ideal p-type organic electrode interlayer capable of resisting solvation of the polar precursor solution in fabricating methylammonium lead iodide (CH3NH3PbI3) perovskite/fullerene (C60) planar heterojunction hybrid solar cells. The polymerized VB-DAAF film exhibits a good energy level alignment with the valence-band-edge level of the CH3NH3PbI3 perovskite to facilitate the transport of holes. The large energy barrier to the conduction-band-edge level of the CH3NH3PbI3 perovskite effectively blocks electrons from reaching the positive electrode and reduces the photon energy loss due to recombination. The best-performing cell with the configuration of glass/indium-tin oxide/polymerized VB-DAAF/CH3NH3PbI3 perovskite/C60/bathocuproine/aluminum is free of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) layer to achieve an open-circuit voltage (VOC) = 1.02 V, a short-circuit current (JSC) = 18.92 mA/cm(2), and a fill factor (FF) = 0.78, corresponding to a power conversion efficiency (PCE) of 15.17% under standard 1 sun AM 1.5G simulated solar irradiation. The performance is much superior to the device applying the PEDOT: PSS interlayer with photovoltaic parameters of VOC = 0.85 V, JSC = 16.37 mA/cm(2), and FF = 0.74, corresponding to a PCE of 10.27%. Additionally, we had applied a UV-assisted process to polymerize the VB-DAAF film at relatively lower temperature and fabricate decent perovskite-based solar cells on the flexible substrate for real applications.

3.
Chem Commun (Camb) ; 50(60): 8208-10, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24931060

RESUMO

A functional monomer was thermally polymerized inside the anodized aluminum oxide (AAO) channel into nanotubes, which were isolated and characterized to be semiconductive and blue fluorescent, and were utilized as nano-containers of Fe3O4 nanoparticles to form magnetic nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...