Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Phytopathology ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970805

RESUMO

MicroRNAs (miRNAs) play crucial roles in plant defense responses. However, the underlying mechanism by which miR398b contributes to soybean responses to soybean cyst nematode (SCN, Heterodera glycines) remains elusive. In this study, by using Agrobacterium rhizogenes-mediated transformation of soybean hairy roots, we observed that miR398b and target genes GmCCS and GmCSD1b played vital functions in soybean-H. glycines interaction. The study revealed that the abundance of miR398b was down-regulated by H. glycines infection, and overexpression miR398b enhanced susceptibility of soybean to H. glycines. Conversely, silencing of miR398b improved soybean resistance to H. glycines. Detection assays revealed that miR398b rapidly senses stress-induced ROS, leading to the repression of target genes GmCCS and GmCSD1b, and regulating the accumulation of plant defense genes against nematodes infection. Moreover, exogenous synthetic ds-miR398b enhanced soybean sensitivity to H. glycines by modulating H2O2 and O2- levels. Functional analysis demonstrated that overexpression GmCCS and GmCSD1b in soybean enhanced resistance to H. glycines. RNA interference (RNAi)-mediated repression of GmCCS and GmCSD1b in soybean increased susceptibility to H. glycines. RNA-sequencing revealed that a majority of differentially expressed genes (DEGs) in overexpression GmCCS were associated with oxidative stress. Overall, the results indicate that miR398b targets superoxide dismutase genes, which negatively regulate soybean resistance to H. glycines via modulating ROS levels and defense signal.

2.
Plant Cell Rep ; 43(8): 196, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009888

RESUMO

KEY MESSAGE: CsDGAT1A and CsDGAT2D play a positive regulatory role in cucumber's response to low-temperature stress and positively regulate the synthesis of triacylglycerol (TAG). Triacylglycerol (TAG), a highly abundant and significant organic compound in plants, plays crucial roles in plant growth, development, and stress responses. The final acetylation step of TAG synthesis is catalyzed by diacylglycerol acyltransferases (DGATs). However, the involvement of DGATs in cucumber's low-temperature stress response remains unexplored. This study focused on two DGAT genes, CsDGAT1A and CsDGAT2D, investigating their function in enhancing cucumber's low-temperature stress tolerance. Our results revealed that both proteins were the members of the diacylglycerol acyltransferase family and were predominantly localized in the endoplasmic reticulum. Functional analysis demonstrated that transient silencing of CsDGAT1A and CsDGAT2D significantly compromised cucumber's low-temperature stress tolerance, whereas transient overexpression enhanced it. Furthermore, the TAG content quantification indicated that CsDGAT1A and CsDGAT2D promoted TAG accumulation. In conclusion, this study elucidates the lipid metabolism mechanism in cucumber's low-temperature stress response and offers valuable insights for the cultivation of cold-tolerant cucumber plants.


Assuntos
Temperatura Baixa , Cucumis sativus , Diacilglicerol O-Aciltransferase , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Triglicerídeos , Cucumis sativus/genética , Cucumis sativus/enzimologia , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética
3.
BMC Plant Biol ; 24(1): 664, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992595

RESUMO

BACKGROUND: Meloidogyne incognita is one of the most important plant-parasitic nematodes and causes tremendous losses to the agricultural economy. Light is an important living factor for plants and pathogenic organisms, and sufficient light promotes root-knot nematode infection, but the underlying mechanism is still unclear. RESULTS: Expression level and genetic analyses revealed that the photoreceptor genes PHY, CRY, and PHOT have a negative impact on nematode infection. Interestingly, ELONGATED HYPOCOTYL5 (HY5), a downstream gene involved in the regulation of light signaling, is associated with photoreceptor-mediated negative regulation of root-knot nematode resistance. ChIP and yeast one-hybrid assays supported that HY5 participates in plant-to-root-knot nematode responses by directly binding to the SWEET negative regulatory factors involved in root-knot nematode resistance. CONCLUSIONS: This study elucidates the important role of light signaling pathways in plant resistance to nematodes, providing a new perspective for RKN resistance research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Doenças das Plantas , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/genética , Arabidopsis/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Transdução de Sinais , Resistência à Doença/genética , Luz , Regulação da Expressão Gênica de Plantas , Transdução de Sinal Luminoso
4.
Front Genet ; 15: 1396875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881796

RESUMO

The flower coloration of Brassica crops possesses significant application and economic value, making it a research hotspot in the field of genetics and breeding. In recent years, great progress has been made in the research on color variation and creation of Brassica crops. However, the underlying molecular mechanisms and evolutional processes of flower colors are poorly understood. In this paper, we present a comprehensive overview of the mechanism of flower color formation in plants, emphasizing the molecular basis and regulation mechanism of flavonoids and carotenoids. By summarizing the recent advances on the genetic mechanism of flower color formation and regulation in Brassica crops, it is clearly found that carotenoids and anthocyanins are major pigments for flower color diversity of Brassica crops. Meantime, we also explore the relationship between the emergence of white flowers and the genetic evolution of Brassica chromosomes, and analyze the innovation and multiple utilization of Brassica crops with colorful flowers. This review aims to provide theoretical support for genetic improvements in flower color, enhancing the economic value and aesthetic appeal of Brassica crops.

5.
J Inorg Biochem ; 258: 112619, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38823066

RESUMO

The present study describes a novel antimicrobial mechanism based on Sodium Orthovanadate (SOV), an alkaline phosphatase inhibitor. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to examine the surface morphologies of the test organism, Escherichia coli (E. coli), during various antibacterial phases. Our results indicated that SOV kills bacteria by attacking cell wall growth and development, leaving E. coli's outer membrane intact. Our antimicrobial test indicated that the MIC of SOV for both E. coli and Lactococcus lactis (L. lactis) is 40 µM. A combination of quantum mechanical calculations and vibrational spectroscopy revealed that divanadate from SOV strongly coordinates with Ca2+ and Mg2+, which are the activity centers for the phosphatase that regulates bacterial cell wall synthesis. The current study is the first to propose the antibacterial mechanism caused by SOV attacking cell wall.


Assuntos
Antibacterianos , Escherichia coli , Vanadatos , Vanadatos/química , Vanadatos/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Lactococcus lactis , Testes de Sensibilidade Microbiana , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Parede Celular/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/antagonistas & inibidores
6.
Phys Rev Lett ; 132(18): 187202, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759185

RESUMO

Constructing a highly localized wave field by means of bound states in the continuum (BICs) promotes enhanced wave-matter interaction and offers approaches to high-sensitivity devices. Elastic waves can carry complex polarizations and thus differ from electromagnetic waves and other scalar mechanical waves in the formation of BICs, which is yet to be fully explored and exploited. Here, we report the investigation of local resonance modes supported by a Lamb waveguide side-branched with two pairs of resonant pillars and show the emergence of two groups of elastic BICs with different polarizations or symmetries. Particularly, the two groups of BICs exhibit distinct responses to external perturbations, based on which a label-free sensing scheme with enhanced-sensitivity is proposed. Our study reveals the rich properties of BICs arising from the complex wave dynamics in elastic media and demonstrates their unique functionality for sensing and detection.

7.
Plant J ; 119(1): 332-347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700955

RESUMO

The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.


Assuntos
Ascomicetos , Cucumis sativus , Doenças das Plantas , Proteínas de Plantas , Cucumis sativus/microbiologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteína Tumoral 1 Controlada por Tradução , Transdução de Sinais , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética
8.
Exp Neurol ; 377: 114778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609045

RESUMO

Neuronal apoptosis is a common pathological change in early brain injury after subarachnoid hemorrhage (SAH), and it is closely associated with neurological deficits. According to previous research, p97 exhibits a remarkable anti-cardiomyocyte apoptosis effect. p97 is a critical molecule in the growth and development of the nervous system. However, it remains unknown whether p97 can exert an anti-neuronal apoptosis effect in SAH. In the present study, we examined the role of p97 in neuronal apoptosis induced after SAH and investigated the underlying mechanism. We established an in vivo SAH mice model and overexpressed the p97 protein through transfection of the mouse cerebral cortex. We analyzed the protective effect of p97 on neurons and evaluated short-term and long-term neurobehavior in mice after SAH. p97 was found to be significantly downregulated in the cerebral cortex of the affected side in mice after SAH. The site showing reduced p97 expression also exhibited a high level of neuronal apoptosis. Adeno-associated virus-mediated overexpression of p97 significantly reduced the extent of neuronal apoptosis, improved early and long-term neurological function, and repaired the neuronal damage in the long term. These neuroprotective effects were accompanied by enhanced proteasome function and inhibition of the integrated stress response (ISR) apoptotic pathway involving eIF2α/CHOP. The administration of the p97 inhibitor NMS-873 induced a contradictory effect. Subsequently, we observed that inhibiting the function of the proteasome with the proteasome inhibitor PS-341 blocked the anti-neuronal apoptosis effect of p97 and enhanced the activation of the ISR apoptotic pathway. However, the detrimental effects of NMS-873 and PS-341 in mice with SAH were mitigated by the administration of the ISR inhibitor ISRIB. These results suggest that p97 can promote neuronal survival and improve neurological function in mice after SAH. The anti-neuronal apoptosis effect of p97 is achieved by enhancing proteasome function and inhibiting the overactivation of the ISR apoptotic pathway.


Assuntos
Apoptose , Camundongos Endogâmicos C57BL , Neurônios , Complexo de Endopeptidases do Proteassoma , Hemorragia Subaracnóidea , Animais , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/complicações , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Masculino , Modelos Animais de Doenças , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos
9.
ACS Appl Mater Interfaces ; 16(14): 17673-17682, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533740

RESUMO

Passivation of the magnesium (Mg) anode in the chloride-free electrolytes using commercially available Mg salts is a critical issue for rechargeable Mg batteries. Herein, a high donor number cosolvent of 1-methylimidazolium (MeIm) is introduced into Mg(TFSI)2- and Mg(HMDS)2-based electrolytes to address the passivation problem and realize highly reversible Mg plating/stripping. Theoretical calculations and experimental characterization results reveal that the strong coordination ability of MeIm with Mg2+ can weaken the anion-cation interactions and promote the formation of free anions that have higher reduction stability, thus significantly suppressing anion-derived passivation layer formation. By adding MeIm cosolvent into Mg(TFSI)2-based electrolyte, the average Coulombic efficiency of the Mg//Cu cell is increased from less than 20% to over 90%, and the Mg//Mg cell can stably cycle for over 800 h with a low overpotential. In the MeIm-regulated Mg(HMDS)2-based electrolyte, the solvation structure change, featured by an effective separation of Mg2+ and HMDS-, greatly increases the ionic conductivity by more than 30 times. This solvation structure regulation strategy for noncorrosive electrolytes of commercially available Mg salts has a great potential for application in future rechargeable Mg metal batteries.

10.
Int J Biol Macromol ; 265(Pt 1): 130797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479662

RESUMO

In recent years, photocatalytic technology has been introduced to develop a new kind antimicrobial agents fighting antibiotic abusing and related drug resistance. The efforts have focused on non-precious metal photocatalysts along with green additives. In the present work, a novel bis-S heterojunctions based on the coupling of polysaccharide (CS) and bismuth-based MOF (CAU-17) s synthesized through a two-step method involving amidation reaction under mild conditions. The as prepared photocatalyst literally extended the light response to the near-infrared region. Owing to its double S-type heterostructure, the lifetime of the photocarriers is significantly prolonged and the redox capacity are enhanced. As a result, the as prepared photocatalyst indicated inhibition up to 99.9 % under 20 min of light exposure against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria as well as drug-resistant bacteria (MRSA). The outstanding photocatalytic performance is attributed to the effective charge separation and migration due to the unique double S heterostructure. Such a double S heterostructure was confirmed through transient photocurrent response, electrochemical impedance spectroscopy tests and electron spin resonance measurements. The present work provides a basis for the simple synthesis of high-performance heterojunction photocatalytic inhibitors, which extends the application of CAU-17 in environmental disinfection and wastewater purification.


Assuntos
Quitosana , Estruturas Metalorgânicas , Bismuto/química , Escherichia coli , Quitosana/farmacologia , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus , Catálise
11.
Ecotoxicol Environ Saf ; 273: 116024, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394753

RESUMO

Excessive carbon emissions, especially CO2 release, have been a global concern. Few studies applied nanotechnology to relieve the ecotoxicity of CO2. Here, we applied carbon dots (CDs) to neutralize the CO2. We found CO2 induced the aggregation of CDs, which is of significance for CDs in enhanced fluorescence intensity but decreased CDs function in nanozyme activity, and reduced CDs toxicity to bacteria and cancer cells. Our data suggest the concern of CO2 release in global health in CDs mediated anticancer drug delivery and antibiotics resistance. However, enhanced fluorescence in cells which can be applied for bioimaging or CO2 sensing as simulated investigation by static charged attraction of positively charged CDs with negatively charged soluble HCO3-. Thus, CO2 abrogates the nanomedicine efficacy in cancer cells and antibacterial and may induce drug resistance for patients undergoing chemotherapy or antibiotics therapy. To overcome the resistance, we may apply the CDs for a neutralization of CO2 for impact on anticancer nanomedicine and antibiotics and reducing the ecotoxicity in biological systems.


Assuntos
Nanopartículas , Pontos Quânticos , Humanos , Antibacterianos/farmacologia , Dióxido de Carbono/farmacologia , Nanomedicina , Sistemas de Liberação de Medicamentos/métodos
12.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171485

RESUMO

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Isoflavonas , Fenilalanina Amônia-Liase , Doenças das Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Resistência à Doença/genética , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
13.
Opt Express ; 32(1): 1047-1062, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175120

RESUMO

The existence of a non-electrically-small scatterer adjacent to the source can severely distort the radiation and lead to a poor electromagnetic compatibility. In this work, we use a conducting hollow cylinder to shield a cylindrical scatterer. The cylinder is shelled with a single dielectric layer enclosed by an electromagnetic metasurface. The relationship between the scattering field and the surface impedance is derived analytically. By optimizing the Fourier expansion coefficients of the surface impedance distribution along ϕ-dimension, the scattering cross-section can be effectively reduced. This unidirectional cloaking method is valid for both TM/TE and non-TM/TE incident field and is not limited to a plane-wave incident field. The accuracy and effectiveness of the method are verified by four cloaking scenarios in microwave regime. We demonstrate that with the surface impedance obtained by the proposed method, a metasurface is designed with physical subwavelength structures. We also show a cloaking scenario under a magnetic dipole radiation, which is closer to the case of a realistic antenna. This method can be further applied to cloaking tasks in terahertz and optical regimes.

14.
Exp Neurol ; 374: 114676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190934

RESUMO

Ischemic stroke is one of the leading causes of global mortality and disability. Nevertheless, successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of miR-96-5p in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-96-5p or the negative control was administered via intracerebroventricular injection. The expression of pyroptosis-related genes and activation of various resident cells in the brain was assessed by RT-qPCR, western blot, immunohistochemistry, and immunofluorescence. Modified neurological severity score, rotarod test, cylinder test, brain water content, and cerebral infarction volume were used to evaluate the behavioral deficits and the severity of brain injury after MCAO. Flow cytometry, TUNEL staining, and Nissl staining were employed to assess the neuron damage. MiR-96-5p decreased markedly in the ischemic stroke model in vivo and in vitro. MiR-96-5p mimics suppressed the expression of caspase 1 and alleviated the apoptosis rate in OGD/R treatment N2a cells, however, the miR-96-5p inhibitor caused the opposite results. Intracerebroventricular delivery of miR-96-5p agomir significantly mitigated behavioral deficits, brain water content, and cerebral infarction volume after MCAO. In addition, treatment with miR-96-5p agomir downregulated the expression of caspase 1/cleaved caspase 1 and Gsdmd/Gsdmd-N, while alleviating the neuron damage. In summary, overexpression of miR-96-5p suppresses pyroptosis and reduces brain damage in the acute phase of ischemic stroke, providing new insight into the treatment of acute ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Apoptose , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Caspase 1 , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Piroptose , Traumatismo por Reperfusão/metabolismo , Água
15.
Plant Sci ; 339: 111945, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061503

RESUMO

Resistance to disease in plants requires the coordinated action of multiple functionally related genes, as it is difficult to improve disease resistance with a single functional gene. Therefore, the use of transcription factors to regulate the expression of multiple resistance genes to improve disease resistance has become a recent focus in the field of gene research. The basic leucine zipper (bZIP) transcription factor family plays vital regulatory roles in processes, such as plant growth and development and the stress response. In our previous study, CsbZIP90 (Cucsa.134370) was involved in the defense response of cucumber to Podosphaera xanthii, but the relationship between cucumber and resistance to powdery mildew remained unclear. Herein, we detected the function of CsbZIP90 in response to P. xanthii. CsbZIP90 was localized to the cytoplasm and nucleus, and its expression was significantly induced during P. xanthii attack. Transient overexpression of CsbZIP90 in cucumber cotyledons resulted in decreased resistance to P. xanthii, while silencing CsbZIP90 increased resistance to P. xanthii. CsbZIP90 negatively regulated the expression of reactive oxygen species (ROS)-related genes and activities of ROS-related kinases. Taken together, our results show that CsbZIP90 suppresses P. xanthi resistance by modulating ROS. This study will provide target genes for breeding cucumbers resistant to P. xanthii.


Assuntos
Ascomicetos , Cucumis sativus , Cucumis sativus/genética , Espécies Reativas de Oxigênio , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética
16.
Physiol Plant ; 175(6): e14124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148210

RESUMO

In cucumber production, delaying leaf senescence is crucial for improving cucumber yield and quality. Target of rapamycin (TOR) is a highly conserved serine/threonine protein kinase in eukaryotes, which can integrate exogenous and endogenous signals (such as cell energy state levels) to stimulate cell growth, proliferation, and differentiation. However, no studies have yet examined the regulatory role of TOR signalling in cucumber leaf senescence. In this study, the effects of TOR signalling on dark-induced cucumber leaf senescence were investigated using the TOR activator MHY1485 and inhibitor AZD8055 combined with transient transformation techniques. The results indicate that TOR responds to dark-induced leaf senescence, and alterations in TOR activity/expression influence cucumber leaf resistance to dark-induced senescence. Specifically, in plants with elevated TOR activity/expression, we observed reduced expression of senescence-related genes, less membrane lipid damage, decreased cell apoptosis, lower levels of reactive oxygen species production, and less damage to the photosynthetic system compared to the control. In contrast, in plants with reduced TOR activity/expression, we observed higher expression of senescence-related genes, increased membrane lipid damage, enhanced cell apoptosis, elevated levels of reactive oxygen species production, and more damage to the photosynthetic system. These comprehensive results underscore the critical role of TOR in regulating dark-induced cucumber leaf senescence. These findings provide a foundation for controlling premature leaf senescence in cucumber production and offer insights for further exploration of leaf senescence mechanisms and the development of more effective control methods.


Assuntos
Cucumis sativus , Espécies Reativas de Oxigênio/metabolismo , Senescência Vegetal , Plantas , Cloroplastos , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/farmacologia
17.
J Agric Food Chem ; 71(46): 18059-18073, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948664

RESUMO

Ubiquitination genes are key components of plant responses to biotic stress. GmPUB20A, a ubiquitination gene, plays a negative role in soybean resistance to soybean cyst nematode (SCN). In this study, we employed high-throughput sequencing to investigate transcriptional changes in GmPUB20A overexpressing and RNA-interfering transgenic hairy roots. Totally, 7661 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that DEGs were significantly enriched in disease resistance and signal transduction pathways. In addition, silencing Glyma.15G021600 and Glyma.09G284700 by siRNA, the total number of nematodes was decreased by 33.48% and 27.47% than control plants, respectively. Further, GUS activity and reactive oxygen species (ROS) assays revealed that GmPUB20A, Glyma.15G021600, and Glyma.09G284700 respond to SCN parasitism and interfere with the accumulation of ROS in plant roots, respectively. Collectively, our study provides insights into the molecular mechanism of GmPUB20A in soybean resistance to SCN.


Assuntos
Cistos , Nematoides , Tylenchoidea , Animais , Glycine max/genética , Glycine max/metabolismo , RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Tylenchoidea/fisiologia , Transcriptoma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
18.
Plant Cell Rep ; 42(12): 1937-1950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823975

RESUMO

KEY MESSAGE: CsCSE genes might be involved in the tolerance of cucumber to pathogens. Silencing of the CsCSE5 gene resulted in attenuated resistance of cucumber to Podosphaera xanthii and Corynespora cassiicola. Caffeoyl shikimate esterase (CSE), a key enzyme in the lignin biosynthetic pathway, has recently been characterized to play a key role in defense against pathogenic infection in plants. However, a systematic analysis of the CSE gene family in cucumber (Cucumis sativus) has not yet been conducted. Here, we identified eight CsCSE genes from the cucumber genome via bioinformatic analyses, and these genes were unevenly distributed on chromosomes 1, 3, 4, and 5. Results from multiple sequence alignment indicated that the CsCSE proteins had domains required for CSE activity. Phylogenetic analysis of gene structure and protein motifs revealed the conservation and diversity of the CsCSE gene family. Collinearity analysis showed that CsCSE genes had high homology with CSE genes in wax gourd (Benincasa hispida). Cis-acting element analysis of the promoters suggested that CsCSE genes might play important roles in growth, development, and stress tolerance. Expression pattern analysis indicated that CsCSE5 might be involved in regulating the resistance of cucumber to pathogens. Functional verification data confirmed that CsCSE5 positively regulates the resistance of cucumber to powdery mildew pathogen Podosphaera xanthii and target leaf spot pathogen Corynespora cassiicola. The results of our study provide information that will aid the genetic improvement of resistant cucumber varieties.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Esterases/genética , Esterases/metabolismo , Filogenia
19.
Asian Biomed (Res Rev News) ; 17(3): 124-135, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37818158

RESUMO

Background: The ambiguity of renal cell carcinoma (RCC) symptoms hinders early diagnosis, thereby contributing to high mortality rates. By attaching to the 3'-untranslated region (UTR) of the target gene, microRNAs (miRNAs) exert significant control over the expression of genes. Objectives: To investigate the influence of miR-30c-2-3p and DNA topoisomerase II alpha (TOP2A) on RCC growth and the mechanisms underlying the regulation of its expression. Methods: The expression of miRNA-30c-2-3p and TOP2A in RCC cells was examined using quantitative real-time polymerase chain reaction (qRT-PCR). MiR-30c-2-3p mimics, its inhibitors, and controls, as well as TOP2A short hairpin RNA (shRNA) and controls, were used to transfect the human RCC cell lines 786-O, Caki-1, and ACHN. Additionally, the roles of miRNA-30c-2-3p and TOP2A in the growth of RCC were evaluated using the cell counting kit (CCK)-8 test, colony formation assay, apoptosis analysis, and Western blotting. Meanwhile, binding of miRNA-30c-2-3p and TOP2A was verified using dual-luciferase reporter assays and Western blotting. Results: miR-30c-2-p is underexpressed in RCC cells. Overexpression of miR-30c-2-p promotes apoptosis and inhibits proliferation of ACHN, Caki-1, and 786-O cells. miR-30c-2-3p targets TOP2A, which is elevated in RCC tissues and cells, whereas TOP2A silencing inhibits the proliferation ability of RCC cells. The miRNA-30c-2-3p inhibitor compromises TOP2A shRNA-induced apoptosis of RCC. RCC cells cotransfected with miRNA-30c-2-3p inhibitors and TOP2A shRNAs have a higher proliferation rate than those transfected with only TOP2A shRNAs. Conclusions: Collectively, our results verify that miRNA-30c-2-3p has a tumor suppressor property. miRNA-30c-2-3p inhibits the proliferation of RCC through regulation of TOP2A. The data provide a viable therapeutic target for RCC.

20.
Redox Biol ; 67: 102887, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717465

RESUMO

Reactive Oxygen Species (ROS) are widely accepted as a pernicious factor in the progression of intracranial aneurysm (IA), which is eminently related to cell apoptosis and extracellular matrix degradation, but the mechanism remains to be elucidated. Recent evidence has identified that enhancement of Cyclophilin D (CypD) under stress conditions plays a critical role in ROS output, thus accelerating vascular destruction. However, no study has confirmed whether cypD is a detrimental mediator of cell apoptosis and extracellular matrix degradation in the setting of IA development. Our data indicated that endogenous cypD mRNA was significantly upregulated in human IA lesions and mouse IA wall, accompanied by higher level of ROS, MMPs and cell apoptosis. CypD-/- remarkably reversed vascular smooth muscle cells (VSMCs) apoptosis and elastic fiber degradation, and significantly decreased the incidence of aneurysm and ruptured aneurysm, together with the downregulation of ROS, 8-OHdG, NLRP3 and MMP9 in vivo and vitro. Furthermore, we demonstrated that blockade of cypD with CsA inhibited the above processes, thus preventing IA formation and rupture, these effects were highly dependent on ROS output. Mechanistically, we found that cypD directly interacts with ATP5B to promote ROS release in VSMCs, and 8-OHdG directly bind to NLRP3, which interacted with MMP9 to increased MMP9 level and activity in vivo and vitro. Our data expound an unexpected role of cypD in IA pathogenesis and an undescribed 8-OHdG/NLRP3/MMP9 pathway involved in accelerating VSMCs apoptosis and elastic fiber degradation. Repressing ROS output by CypD inhibition may be a promising therapeutic strategy for prevention IA development.


Assuntos
Aneurisma Intracraniano , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Peptidil-Prolil Isomerase F , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Metaloproteinase 9 da Matriz/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...