Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 659: 974-983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219315

RESUMO

Yolk-shell-structured transition metal sulfides (TMSs)/carbon nanocomposites are highly desirable in advanced energy storage system, such as sodium-ion batteries (SIBs) and supercapacitors (SCs). Nevertheless, practical applications are still prevented by the loose attachment of TMSs with carbon caused by conversion stress, the aggregation of TMSs nanoparticles and the sluggish ion transport caused by high crystallinity of carbon. Here, the disperse hollow Co9S8 nanoparticles encapsulated into N,S-codoped carbon nanotubes (CNTs) with poor crystallinity through CoNC bond was synthesized (CS-NSCNT) to overcome the above obstacles. The designed CS-NSCNT can provide the short diffusion path and prevent the huge volume expansion of conversion reaction. Moreover, the established CoNC bond endows the strong interaction and regulates the electronic structure thus promote the stability and rate performance effectively. The CS-NSCNT SCs's electrode delivers a high specific capacitance of 1150 F g-1 at 1 A g-1, with a high cycling life stability and rate performance. For SIBs, the CS-NSCNT cathode demonstrates an initial reversible capacity of 475 mAh g-1 at 0.1 A g-1 and an excellent rate performance with a capacity retention of 53 % at 10 A g-1. This work may satisfy the long-stability, high-capacitance/capacity, high-power/energy density application requirements of future applications.

2.
Small ; 20(26): e2311343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38236167

RESUMO

Although lithium-sulfur (Li-S) batteries have broad market prospects due to their high theoretical energy density and potential cost-effectiveness, the practical applications still face serious shuttle effects of polysulfides (LiPSs) and slow redox reactions. Therefore, in this paper, cobalt nitride nanoparticles encapsulated in nitrogen-doped carbon nanotube (CoN@NCNT) are prepared as a functional layer for the separator of high-performance Li-S batteries. Carbon nanotubes with large specific surface areas not only promote the transport of ions and electrons but also weaken the migration of LiPSs and confine the dissolution of LiPSs in electrolytes. The lithiophilic heteroatom N adsorbs LiPSs by strong chemical adsorption, and the CoN particles with high catalytic activity greatly improve the kinetics of the conversion between LiPSs and Li2S2/Li2S during the charge-discharge process. Due to these advantages, the battery with CoN@NCNT modified separator has superior rate performance (initial discharge capacity of 834.7 mAh g-1 after activation at 1 C) and excellent cycle performance (capacity remains 729.7 mAh g-1 after 200 cycles at 0.2 C). This work proposes a strategy that can give the separator a strong ability to confinement-adsorption-catalysis of LiPSs in order to provide more possibilities for the development of Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...