Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 40(7): 887-904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321347

RESUMO

Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.


Assuntos
Região CA1 Hipocampal , Plasticidade Neuronal , Células Piramidais , Comportamento Social , Sinapses , Animais , Masculino , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
2.
Neurophotonics ; 11(1): 015001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125610

RESUMO

Significance: Comorbidities such as mood and cognitive disorders are often found in individuals with epilepsy after seizures. Cortex processes sensory, motor, and cognitive information. Brain circuit changes can be studied by observing functional network changes in epileptic mice's cortex. Aim: The cortex is easily accessible for non-invasive brain imaging and electroencephalogram recording (EEG). However, the impact of seizures on cortical activity and functional connectivity has been rarely studied in vivo. Approach: Intrinsic optical signal and EEG were used to monitor cortical activity in awake mice within 4 h after pilocarpine induction. It was divided into three periods according to the behavior and EEG of the mice: baseline, onset of seizures (onset, including seizures and resting in between seizure events), and after seizures (post, without seizures). Changes in cortical activity were compared between the baseline and after seizures. Results: Hemoglobin levels increased significantly, particularly in the parietal association cortex (PT), retrosplenial cortex (RS), primary visual cortex (V1), and secondary visual cortex (V2). The network-wide functional connectivity changed post seizures, e.g., hypoconnectivity between PT and visual-associated cortex (e.g., V1 and V2). In contrast, connectivity between the motor-associated cortex and most other regions increased. In addition, the default mode network (DMN) also changed after seizures, with decreased connectivity between primary somatosensory region (SSp) and visual region (VIS), but increased connectivity involving anterior cingulate cortex (AC) and RS. Conclusions: Our results provide references for understanding the mechanisms behind changes in brain circuits, which may explain the profound effects of seizures on comorbid health conditions.

3.
Neurobiol Dis ; 186: 106273, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648036

RESUMO

Epilepsy is one of the most common neurological disorders. Neuroinflammation involving the activation of microglia and astrocytes constitutes an important and common mechanism in epileptogenesis. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in various inflammation-related diseases. Our previous study demonstrated that Trpm2 knockout exhibits therapeutic effects on pilocarpine-induced glial activation and neuroinflammation. However, whether TRPM2 in microglia and astrocytes plays a common pathogenic role in this process and the underlying molecular mechanisms remained undetermined. Here, we demonstrate a previously unknown role for microglial TRPM2 in epileptogenesis. Trpm2 knockout in microglia attenuated kainic acid (KA)-induced glial activation, inflammatory cytokines production and hippocampal paroxysmal discharges, whereas Trpm2 knockout in astrocytes exhibited no significant effects. Furthermore, we discovered that these therapeutic effects were mediated by upregulated autophagy via the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in microglia. Thus, our findings highlight an important deleterious role of microglial TRPM2 in temporal lobe epilepsy.


Assuntos
Microglia , Canais de Cátion TRPM , Humanos , Proteínas Quinases Ativadas por AMP , Doenças Neuroinflamatórias , Canais de Cátion TRPM/genética , Serina-Treonina Quinases TOR , Autofagia , Canais de Cálcio
4.
CNS Neurosci Ther ; 29(10): 2884-2900, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37072932

RESUMO

BACKGROUND: A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS: Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS: We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS: Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Ratos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Microglia/patologia , Ratos Sprague-Dawley , Hipocampo/patologia , Convulsões/patologia , Região CA1 Hipocampal , Sinapses/patologia , Ácido Caínico/toxicidade , Modelos Animais de Doenças
5.
J Neuroinflammation ; 19(1): 226, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104755

RESUMO

Evidence from experimental and clinical studies implicates immuno-inflammatory responses as playing an important role in epilepsy-induced brain injury. Captopril, an angiotensin-converting enzyme inhibitor (ACEi), has previously been shown to suppress immuno-inflammatory responses in a variety of neurological diseases. However, the therapeutic potential of captopril on epilepsy remains unclear. In the present study, Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to establish a status epilepticus. Captopril (50 mg/kg, i.p.) was administered daily following the KA administration from day 3 to 49. We found that captopril efficiently suppressed the KA-induced epilepsy, as measured by electroencephalography. Moreover, captopril ameliorated the epilepsy-induced cognitive deficits, with improved performance in the Morris water maze, Y-maze and novel objective test. RNA sequencing (RNA-seq) analysis indicated that captopril reversed a wide range of epilepsy-related biological processes, particularly the glial activation, complement system-mediated phagocytosis and the production of inflammatory factors. Interestingly, captopril suppressed the epilepsy-induced activation and abnormal contact between astrocytes and microglia. Immunohistochemical experiments demonstrated that captopril attenuated microglia-dependent synaptic remodeling presumably through C3-C3ar-mediated phagocytosis in the hippocampus. Finally, the above effects of captopril were partially blocked by an intranasal application of recombinant C3a (1.3 µg/kg/day). Our findings demonstrated that captopril reduced the occurrence of epilepsy and cognitive impairment by attenuation of inflammation and C3-mediated synaptic phagocytosis. This approach can easily be adapted to long-term efficacy and safety in clinical practice.


Assuntos
Disfunção Cognitiva , Epilepsia , Animais , Captopril/farmacologia , Captopril/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Inflamação/tratamento farmacológico , Ácido Caínico/toxicidade , Fagocitose , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...