Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341762

RESUMO

Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.

2.
Phys Rev E ; 108(5-1): 054311, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115465

RESUMO

Traffic congestion is a major problem in megacities which increases vehicle emissions and degrades ambient air quality. Various models have been developed to address the universal features of traffic jams. These models range from microscopic car-following models to macroscopic collective dynamic models. Here, we study the macrostructure of congested traffic influenced by the complex geometry of the commute. Our main focus is on the dynamics of traffic patterns in Paris and Los Angeles, each with distinct urban structures. We analyze the complexity of the giant traffic clusters based on a percolation framework during rush hours in the mornings, evenings, and holidays. We uncover that the universality described by several critical exponents of traffic patterns is highly correlated with the geometry of commute and the underlying urban structure. Our findings might have broad implications for developing a greener, healthier, and more sustainable future city.

3.
Nat Commun ; 14(1): 6574, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852979

RESUMO

The Arctic's rapid sea ice decline may influence global weather patterns, making the understanding of Arctic weather variability (WV) vital for accurate weather forecasting and analyzing extreme weather events. Quantifying this WV and its impacts under human-induced climate change remains a challenge. Here we develop a complexity-based approach and discover a strong statistical correlation between intraseasonal WV in the Arctic and the Arctic Oscillation. Our findings highlight an increased variability in daily Arctic sea ice, attributed to its decline accelerated by global warming. This weather instability can influence broader regional patterns via atmospheric teleconnections, elevating risks to human activities and weather forecast predictability. Our analyses reveal these teleconnections and a positive feedback loop between Arctic and global weather instabilities, offering insights into how Arctic changes affect global weather. This framework bridges complexity science, Arctic WV, and its widespread implications.

4.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847676

RESUMO

Teleconnections refer to long-range climate system linkages occurring over typically thousands of kilometers. Generally speaking, most teleconnections are attributed to the transmission of energy and propagation of waves although the physical complexity and characteristics behind these waves are not fully understood. To address this knowledge gap, we develop a climate network-based approach to reveal their directions and distribution patterns, evaluate the intensity of teleconnections, and identify sensitive regions using global daily surface air temperature data. Our results reveal a stable average intensity distribution pattern for teleconnections across a substantial spatiotemporal scale from 1948 to 2021, with the extent and intensity of teleconnection impacts increasing more prominently in the Southern Hemisphere over the past 37 years. Furthermore, we pinpoint climate-sensitive regions, such as southeastern Australia, which are likely to face increasing impacts due to global warming. Our proposed method offers new insights into the dynamics of global climate patterns and can inform strategies to address climate change and extreme events.

5.
Pest Manag Sci ; 79(12): 5405-5417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671482

RESUMO

BACKGROUND: Maize is one of the world's most important crops, so its stable production and supply is crucial for food security and socioeconomic development. The cotton bollworm, Helicoverpa armigera (Hübner), is one of the major pests in maize. We evaluated the control effect of a bio-bait, an adult attractant, combined with insecticide, a 'toxicant-infused bait', on H. armigera populations in maize fields, as well as the impact on crop yield and quality through large-scale field applications in Hebei Province, China over a period spanning 2019 to 2021. RESULT: The number of male and female H. armigera adults killed by strip application ranged from 1 to 37 and 4 to 36 per strip, respectively, of which female moths were 53%. Following the application of toxicant-infused bait, we observed a significant reduction in the populations of eggs and larvae, with the average adjusted decrease range from 58% to 63% for eggs and from 34% to 62% for larvae. The application of toxicant-infused bait also resulted in a notable reduction in the proportion of damaged maize plants, with an adjusted decline rate ranging from 59% to 69%. Concurrently, we observed an increase in yield by 4% to 8%. The concentration of aflatoxin in harvested maize grains was significantly reduced from an initial level of 1.24 to 0.1 ug/kg. CONCLUSION: By applying toxicant-infused bait, there was a significant reduction in the population of H. armigera adults and their offspring, resulting in an improved yield and quality of maize. Toxicant-infused bait has great application potential in the integrated pest management of H. armigera. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Zea mays , Larva , Inseticidas/farmacologia , Produtos Agrícolas
6.
Chaos ; 33(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163995

RESUMO

Detecting overlapping communities is essential for analyzing the structure and function of complex networks. However, most existing approaches only consider network topology and overlook the benefits of attribute information. In this paper, we propose a novel attribute-information non-negative matrix factorization approach that integrates sparse constraints and optimizes an objective function for detecting communities in directed weighted networks. Our algorithm updates the basic non-negative matrix adaptively, incorporating both network topology and attribute information. We also add a sparsity constraint term of graph regularization to maintain the intrinsic geometric structure between nodes. Importantly, we provide strict proof of convergence for the multiplication update rule used in our algorithm. We apply our proposed algorithm to various artificial and real-world networks and show that it is more effective for detecting overlapping communities. Furthermore, our study uncovers the intricate iterative process of system evolution toward convergence and investigates the impact of various variables on network detection. These findings provide insights into building more robust and operable complex systems.

7.
Chaos ; 32(8): 081105, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36049958

RESUMO

Cities are typical dynamic complex systems that connect people and facilitate interactions. Revealing general collective patterns behind spatiotemporal interactions between residents is crucial for various urban studies, of which we are still lacking a comprehensive understanding. Massive cellphone data enable us to construct interaction networks based on spatiotemporal co-occurrence of individuals. The rank-size distributions of dynamic population of locations in all unit time windows are stable, although people are almost constantly moving in cities and hot-spots that attract people are changing over time in a day. A larger city is of a stronger heterogeneity as indicated by a larger scaling exponent. After aggregating spatiotemporal interaction networks over consecutive time windows, we reveal a switching behavior of cities between two states. During the "active" state, the whole city is concentrated in fewer larger communities, while in the "inactive" state, people are scattered in smaller communities. Above discoveries are universal over three cities across continents. In addition, a city stays in an active state for a longer time when its population grows larger. Spatiotemporal interaction segregation can be well approximated by residential patterns only in smaller cities. In addition, we propose a temporal-population-weighted-opportunity model by integrating a time-dependent departure probability to make dynamic predictions on human mobility, which can reasonably well explain the observed patterns of spatiotemporal interactions in cities.


Assuntos
Reforma Urbana , Cidades , Conservação dos Recursos Naturais , Humanos
8.
Front Nutr ; 9: 925642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938122

RESUMO

The study aimed to investigate the effects of pulsed electric field (PEF)-assisted extraction on the yield, physicochemical properties, and structure of soluble dietary fiber (SDF) from orange peel. The results showed that the optinal parameters of PEF assisted extraction SDF was temperature of 45oC with the electric field intensity of 6.0 kV/cm, pulses number of 30, and time of 20min and SDF treated with PEF showed the higher water solubility, water-holding and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, foam stability and higher binding capacity for Pb2+, As3+, Cu2+, and higher which resulted from the higher viscosity due to PEF treatment. Compared with the untreated orange peel, the SDF obtained with PEF exhibited stronger antioxidant activities, which was due to its smaller molecular weight (189 vs. 512 kDa). In addition, scanning electron micrograph images demonstrated that the surface of PEF-SDF was rough and collapsed. Overall, it was suggested that PEF treatment could improve the physicochemical properties of SDF from the orange peel and would be the potential extraction technology with high efficiency.

9.
Chaos ; 32(4): 041106, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35489858

RESUMO

Air pollution causes widespread environmental and health problems and severely hinders the quality of life of urban residents. Traffic is critical for human life, but its emissions are a major source of pollution, aggravating urban air pollution. However, the complex interaction between traffic emissions and air pollution in cities and regions has not yet been revealed. In particular, the spread of COVID-19 has led various cities and regions to implement different traffic restriction policies according to the local epidemic situation, which provides the possibility to explore the relationship between urban traffic and air pollution. Here, we explore the influence of traffic on air pollution by reconstructing a multi-layer complex network base on the traffic index and air quality index. We uncover that air quality in the Beijing-Tianjin-Hebei (BTH), Chengdu-Chongqing Economic Circle (CCS), and Central China (CC) regions is significantly influenced by the surrounding traffic conditions after the outbreak. Under different stages of the fight against the epidemic, the influence of traffic in some regions on air pollution reaches the maximum in stage 2 (also called Initial Progress in Containing the Virus). For the BTH and CC regions, the impact of traffic on air quality becomes bigger in the first two stages and then decreases, while for CC, a significant impact occurs in phase 3 among the other regions. For other regions in the country, however, the changes are not evident. Our presented network-based framework provides a new perspective in the field of transportation and environment and may be helpful in guiding the government to formulate air pollution mitigation and traffic restriction policies.


Assuntos
Poluição do Ar , COVID-19 , Poluição Relacionada com o Tráfego , Poluição do Ar/análise , COVID-19/epidemiologia , Humanos , Análise Espaço-Temporal , Poluição Relacionada com o Tráfego/análise
10.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782455

RESUMO

Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.

11.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531370

RESUMO

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Assuntos
COVID-19 , Portador Sadio/imunologia , Linfócitos/imunologia , SARS-CoV-2/imunologia , Análise de Célula Única , Transcriptoma/imunologia , Adolescente , Adulto , COVID-19/genética , COVID-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/genética
12.
Chaos ; 31(7): 071102, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340317

RESUMO

Studies on stratospheric ozone have attracted much attention due to its serious impacts on climate changes and its important role as a tracer of Earth's global circulation. Tropospheric ozone as a main atmospheric pollutant damages human health as well as the growth of vegetation. Yet, there is still a lack of a theoretical framework to fully describe the variation of ozone. To understand ozone's spatiotemporal variance, we introduce the eigen microstate method to analyze the global ozone mass mixing ratio between January 1, 1979 and June 30, 2020 at 37 pressure layers. We find that eigen microstates at different geopotential heights can capture different climate phenomena and modes. Without deseasonalization, the first eigen microstates capture the seasonal effect and reveal that the phase of the intra-annual cycle moves with the geopotential heights. After deseasonalization, by contrast, the collective patterns from the overall trend, El Niño-Southern Oscillation (ENSO), quasi-biennial oscillation, and tropopause pressure are identified by the first few significant eigen microstates. The theoretical framework proposed here can also be applied to other complex Earth systems.

13.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035163

RESUMO

Coupling between networks is widely prevalent in real systems and has dramatic effects on their resilience and functional properties. However, current theoretical models tend to assume homogeneous coupling where all the various subcomponents interact with one another, whereas real-world systems tend to have various different coupling patterns. We develop two frameworks to explore the resilience of such modular networks, including specific deterministic coupling patterns and coupling patterns where specific subnetworks are connected randomly. We find both analytically and numerically that the location of the percolation phase transition varies nonmonotonically with the fraction of interconnected nodes when the total number of interconnecting links remains fixed. Furthermore, there exists an optimal fraction [Formula: see text] of interconnected nodes where the system becomes optimally resilient and is able to withstand more damage. Our results suggest that, although the exact location of the optimal [Formula: see text] varies based on the coupling patterns, for all coupling patterns, there exists such an optimal point. Our findings provide a deeper understanding of network resilience and show how networks can be optimized based on their specific coupling patterns.

14.
Chaos ; 31(3): 031104, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33810718

RESUMO

Increasing atmospheric carbon dioxide (CO2) is expected to be the main factor of global warming. The relation between CO2 concentrations and surface air temperature (SAT) has been found related to Rossby waves based on a multi-layer complex network approach. However, the significant relations between CO2 and SAT occur in the South Hemisphere that is not that much influenced by human activities may offer not enough information to formulate targeted carbon reduction policies. Here, we address it by removing the effects of the Rossby waves to reconstruct CO2 concentrations and SAT multi-layer complex network. We uncover that the CO2 concentrations are strongly associated with the surrounding SAT regions. The influential regions of CO2 on SAT occur over eastern Asia, West Asia, North Africa, the coast of North American, and Western Europe. It is shown that CO2 over Siberia in phase with the SAT variability in eastern East Asia. Indeed, CO2 concentration variability is causing effects on the recent warming of SAT in some middle latitude regions. Furthermore, sensitive parameters that CO2 impacts SAT of top 15 carbon emissions countries have been identified. These countries are significantly responsible for global warming, giving implications for carbon emissions reductions. The methodology and results presented here not only facilitate further research in regions of increased sensitivity to the warming resulting from CO2 concentrations but also can formulate strategies and countermeasures for carbon emission and carbon reduction.

15.
Phys Rev E ; 104(6-1): 064139, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030827

RESUMO

The atmosphere is a thermo-hydrodynamical complex system and provides oxygen to most animal life at the Earth's surface. However, the detection of complexity for the atmosphere remains elusive and debated. Here we develop a percolation-based framework to explore its structure by using the global air temperature field. We find that the percolation threshold is much delayed compared with the prototypical percolation model and the giant cluster eventually emerges explosively. A finite-size-scaling analysis reveals that the observed transition in each atmosphere layer is genuine discontinuous. Furthermore, at the percolation threshold, we uncover that the boundary of the giant cluster is self-affine, with fractal dimension d_{f}, and can be utilized to quantify the atmospheric complexity. Specifically, our results indicate that the complexity of the atmosphere decreases superlinearly with height, i.e., the complexity is higher at the surface than at the top layer and vice versa, due to the atmospheric boundary forcings. The proposed methodology may evaluate and improve our understanding regarding the critical phenomena of the complex Earth system and can be used as a benchmark tool to test the performance of Earth system models.

16.
Phys Rep ; 896: 1-84, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33041465

RESUMO

Global warming, extreme climate events, earthquakes and their accompanying socioeconomic disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, multiple interactions and complex structures of the Earth system, the understanding and, in particular, the prediction of such disruptive events represent formidable challenges to both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge of the Earth system, including climate extreme events, earthquakes and geological relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as critical phenomena, network theory, percolation, tipping points analysis, and entropy can be applied to complex Earth systems. Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics concepts and theories can be useful in the field of Earth system science.

17.
Proc Natl Acad Sci U S A ; 117(1): 177-183, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31874928

RESUMO

The El Niño Southern Oscillation (ENSO) is one of the most prominent interannual climate phenomena. Early and reliable ENSO forecasting remains a crucial goal, due to its serious implications for economy, society, and ecosystem. Despite the development of various dynamical and statistical prediction models in the recent decades, the "spring predictability barrier" remains a great challenge for long-lead-time (over 6 mo) forecasting. To overcome this barrier, here we develop an analysis tool, System Sample Entropy (SysSampEn), to measure the complexity (disorder) of the system composed of temperature anomaly time series in the Niño 3.4 region. When applying this tool to several near-surface air temperature and sea surface temperature datasets, we find that in all datasets a strong positive correlation exists between the magnitude of El Niño and the previous calendar year's SysSampEn (complexity). We show that this correlation allows us to forecast the magnitude of an El Niño with a prediction horizon of 1 y and high accuracy (i.e., root-mean-square error = 0.23° C for the average of the individual datasets forecasts). For the 2018 El Niño event, our method forecasted a weak El Niño with a magnitude of 1.11±0.23° C. Our framework presented here not only facilitates long-term forecasting of the El Niño magnitude but can potentially also be used as a measure for the complexity of other natural or engineering complex systems.

18.
Phys Rev E ; 99(4-1): 042210, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108655

RESUMO

Earthquakes are one of the most devastating natural disasters that plague society. Skilled, reliable earthquake forecasting remains the ultimate goal for seismologists. Using the detrended fluctuation analysis (DFA) and conditional probability (CP) methods, we find that memory exists not only in interoccurrence seismic records but also in released energy as well as in the series of the number of events per unit time. Analysis of a standard epidemic-type aftershock sequences (ETAS) earthquake model indicates that the empirically observed earthquake memory can be reproduced only for a narrow range of the model's parameters. This finding therefore provides tight constraints on the model's parameters and can serve as a testbed for existing earthquake forecasting models. Furthermore, we show that by implementing DFA and CP results, the ETAS model can significantly improve the short-term forecasting rate for the real (Italian) earthquake catalog.

19.
Phys Rev E ; 99(2-1): 022304, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934344

RESUMO

Self-similarity and long-range correlations are the remarkable features of the Earth's surface topography. Here we develop an approach based on percolation theory to study the geometrical features of Earth. Our analysis is based on high-resolution, 1 arc min, ETOPO1 global relief records. We find some evidence for abrupt transitions that occurred during the evolution of the Earth's relief network, indicative of a continental/cluster aggregation. We apply finite-size-scaling analysis based on a coarse-graining procedure to show that the observed transition is most likely discontinuous. Furthermore, we study the percolation on two-dimensional fractional Brownian motion surfaces with Hurst exponent H as a model of long-range correlated topography, which suggests that the long-range correlations may play a key role in the observed discontinuity on Earth. Our framework presented here provides a theoretical model to better understand the geometrical phase transition on Earth, and it also identifies the critical nodes that will be more exposed to global climate change in the Earth's relief network.

20.
Proc Natl Acad Sci U S A ; 115(52): E12128-E12134, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587552

RESUMO

Global climate warming poses a significant challenge to humanity; it is associated with, e.g., rising sea level and declining Arctic sea ice. Increasing extreme events are also considered to be a result of climate warming, and they may have widespread and diverse effects on health, agriculture, economics, and political conflicts. Still, the detection and quantification of climate change, both in observations and climate models, constitute a main focus of the scientific community. Here, we develop an approach based on network and percolation frameworks to study the impacts of climate changes in the past decades using historical models and reanalysis records, and we analyze the expected upcoming impacts using various future global warming scenarios. We find an abrupt transition during the evolution of the climate network, indicating a consistent poleward expansion of the largest cluster that corresponds to the tropical area, as well as the weakening of the strength of links in the tropic. This is found both in the reanalysis data and in the Coupled Model Intercomparison Project Phase 5 (CMIP5) 21st century climate change simulations. The analysis is based on high-resolution surface (2 m) air temperature field records. We discuss the underlying mechanism for the observed expansion of the tropical cluster and associate it with changes in atmospheric circulation represented by the weakening and expansion of the Hadley cell. Our framework can also be useful for forecasting the extent of the tropical cluster to detect its influence on different areas in response to global warming.


Assuntos
Aquecimento Global , Camada de Gelo/química , Regiões Árticas , Modelos Teóricos , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...