Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(19): e2115231119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500118

RESUMO

Piecing together the history of carbon (C) perturbation events throughout Earth's history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO2) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter­derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse.


Assuntos
Aquecimento Global , Água do Mar , Carbono/análise , Humanos , Hipóxia , Oceanos e Mares
2.
Science ; 367(6475): 272-277, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949075

RESUMO

One great challenge in understanding the history of life is resolving the influence of environmental change on biodiversity. Simulated annealing and genetic algorithms were used to synthesize data from 11,000 marine fossil species, collected from more than 3000 stratigraphic sections, to generate a new Cambrian to Triassic biodiversity curve with an imputed temporal resolution of 26 ± 14.9 thousand years. This increased resolution clarifies the timing of known diversification and extinction events. Comparative analysis suggests that partial pressure of carbon dioxide (Pco2) is the only environmental factor that seems to display a secular pattern similar to that of biodiversity, but this similarity was not confirmed when autocorrelation within that time series was analyzed by detrending. These results demonstrate that fossil data can provide the temporal and taxonomic resolutions necessary to test (paleo)biological hypotheses at a level of detail approaching those of long-term ecological analyses.


Assuntos
Biodiversidade , Dióxido de Carbono , Extinção Biológica , Invertebrados/classificação , Animais , Evolução Biológica , Fósseis , Invertebrados/genética , Pressão Parcial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...