Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4948, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862486

RESUMO

Seasonal storage of solar thermal energy through supercooled phase change materials (PCM) offers a promising solution for decarbonizing space and water heating in winter. Despite the high energy density and adaptability, natural PCMs often lack the necessary supercooling for stable, long-term storage. Leveraging erythritol, a sustainable mid-temperature PCM with high latent heat, we introduce a straightforward method to stabilize its supercooling by incorporating carrageenan (CG), a bio-derived food thickener. By improving the solid-liquid interfacial energy with the addition of CG the latent heat of erythritol can be effectively locked at a very low temperature. We show that the composite PCM can sustain an ultrastable supercooled state below -30 °C, which guarantees no accidental loss of the latent heat in severe cold regions on Earth. We further demonstrate that the common ultrasonication method can be used as the key to unlocking the latent heat stored in the CG-thickened erythritol, showing its great potential to serve as a high-performance, eco-friendly PCM for long-term seasonal solar energy storage.

2.
Langmuir ; 40(19): 10217-10227, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688028

RESUMO

The temperature dependence of the dynamic contact angles (DCAs) of water on a metallic surface remains unclear, especially under elevated pressures. Here in this work, the advancing and receding contact angles (RCAs), as well as the contact angle hysteresis (CAH), of water on stainless-steel 316 (SS316) surfaces were studied using the dynamic sessile drop method for temperatures up to 300 °C and pressures up to 10 MPa. It was found that the temperature dependence of the DCAs exhibits a different pattern as compared to the piecewise linear decline of static contact angles. The advancing contact angle (ACA) remains nearly constant and does not decrease until the temperature becomes close to the saturated temperature. The decrease in ACA is attributed to evaporation, which reduces the advancement of energy barrier. The RCA linearly declines below 120 °C and remains stable above 120 °C. The increasing temperature enhances the pinning effect and changes the droplet receding mode. Under all pressures tested, the CAH demonstrates a "increase-constant-decrease" trilinear relationship with temperature. Furthermore, the mean solid surface entropy and solid-gas interfacial tension of SS316 were estimated to be 0.1152 mJ/(m2·°C) and 61.49 mJ/m2, respectively.

3.
Environ Sci Technol ; 57(42): 16043-16052, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37819732

RESUMO

In situ thermal desorption (ISTD) provides an efficient solution to remediation of soil and groundwater contaminated with nonaqueous phase liquids (NAPLs). Establishing a relationship between the subsurface temperature rise and NAPL removal is significant to reduce energy consumption of ISTD. However, the co-boiling phenomenon between NAPL and water poses a great challenge in developing this relationship due to the nonequilibrium heat and mass transport effects. We performed a systematic experimental investigation into the local temperature rise patterns at different distances from a NAPL pool and under different degrees of superheat by selecting four representative NAPLs (i.e., trichloroethylene, tetrachlorethylene, n-hexane, and n-octane) according to their density and boiling point relative to water. The patterns of temperature rise indicated that the underground temperature field can be divided into three zones: the zone of local thermal equilibrium, the nonequilibrium zone affected by co-boiling, and the zone unaffected by co-boiling. We developed a pattern-recognition-based approach, which considers the effects of local heat and mass transport to establish a qualitative correlation between the temperature rise and NAPL removal. Our results give deeper insights into the understanding of subsurface temperatures in ISTD practice, which can serve as the guideline for more accurate and sustainable remediation.


Assuntos
Poluentes do Solo , Tricloroetileno , Poluentes Químicos da Água , Temperatura Alta , Água , Temperatura , Poluentes Químicos da Água/análise
4.
J Colloid Interface Sci ; 607(Pt 2): 1571-1579, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34587531

RESUMO

HYPOTHESIS: Pressure dependence of contact angle is expected to be influenced by temperature. Nevertheless, the correlation of water contact angle with pressure is rarely investigated at high temperatures (over 100 ℃). EXPERIMENTS: In this work, measurements of the contact angle and interfacial tension of water in N2 atmosphere were conducted at various pressures and temperatures (up to 17 MPa and 300 ℃). The experimental observations were elucidated based on the theory of surface thermodynamics. FINDINGS: It was shown that the water-N2 interfacial tension linearly decreases with increasing the pressure, and that the pressure coefficient declines as temperature rises. The pressure dependence of the water contact angle was found to be different for the low- and high-temperature regimes: the water contact angle increases below 100 ℃, whereas an inverse variation occurs over 100 ℃. According to the theoretical analysis, the pressure dependence of both the water interfacial tension and contact angle is attributed to N2 adsorption on the surfaces of water and silicon. The variations in the water contact angle with pressure, including both the sign and magnitude, are actually the consequence of the changes of water-N2 and Si-N2 interfacial tensions manipulated by pressure and temperature.

5.
J Colloid Interface Sci ; 605: 163-172, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311311

RESUMO

HYPOTHESIS: In terms of the Young's equation, the temperature dependence of liquid-solid contact angle is affected by the surface material, so the wetting behavior could be tuned by both changing the temperature and surface material. However, the synergistic effects of surface material and temperature on the water contact angle remain unclear, especially at elevated temperatures. EXPERIMENTS: In this study, a systematic characterization of water contact angle against various smooth metallic and nonmetallic surfaces was conducted for temperatures up to 300 ℃ in a high-pressure chamber at 15 MPa. The measured results were finally compared with the predictions made by the sharp-kink approximation model. FINDINGS: Not surprisingly, it was observed the temperature-dependent water contact angle is sensitive to the type of solid surface. The temperature coefficients and critical temperature points on the contact-angle-temperature curves can be manipulated by altering the surface material. However, the influence of surface material is weakened by raising temperature, thus leading to the nearly consistent temperature-dependent water contact angle over 120℃. Additionally, the necessity of investigating the internal flows within the water drops was highlighted to unravel the positive temperature correlation of the water contact angle at high temperatures, in view of the presence of non-spherical-cap-shaped drops.


Assuntos
Água , Temperatura , Molhabilidade
6.
Langmuir ; 37(14): 4200-4212, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33793252

RESUMO

The evaporation of water droplets on a solid surface at elevated temperatures under a pressurized condition has not yet been well understood, although this phenomenon is of both theoretical and practical significance. In this work, water droplet evaporation on smooth stainless steel surfaces in nitrogen gas atmosphere at elevated pressures and temperatures (up to 2 MPa and 202.4 °C, respectively) was investigated experimentally. It was observed that the increase in pressure diminishes the proportion of the constant contact radius stage over the entire evaporation time, whereas an opposite trend was found when raising the temperature, due to the change in the surface pinning ability with pressure (and temperature). The results also suggested that the evaporation mode transition is mainly affected by temperature rather than pressure. In addition, the evaporation rate was calculated under various degrees of subcooling, revealing that the evaporation rate increases almost linearly with pressure when keeping the degree of subcooling constant. However, when fixing the test temperature, a nonlinear decrease of the evaporation rate with pressure was observed. A power law growth of the evaporation rate with temperature was also found at a constant pressure. Last, it was uncovered by a theoretical analysis that the saturated vapor concentration is the dominant factor dictating the evaporation rate.

7.
Adv Colloid Interface Sci ; 288: 102339, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385775

RESUMO

Contact angle, a quantitative measure of macroscopic surface wettability, plays an important role in understanding liquid-vapor heterogeneous phase change phenomena, e.g., boiling heat transfer. The contact angles of water at elevated temperatures are of particular interest for understanding of wettability-regulated boiling heat transfer in steam-based power generation. From a more theoretical perspective, the temperature dependence of contact angle of water is also essential to estimation of several key surface thermodynamic properties, such as the solid surface tension, the surface entropy, and the heats of immersion and adsorption. Here, a comprehensive review of historical efforts in measuring the contact angles of water over a wide temperature range on a variety of solids, not limited to metallic surfaces, is presented. As suggested by the literature data, the temperature dependence of contact angle of water may be classified into three regimes: (a) low temperatures below the saturation point (i.e., 100 °C at atmospheric pressure), (b) medium temperatures up to ~170 °C, and (c) high temperatures up to 300 °C at pressurized conditions. A slightly-decreasing or nearly-invariant trend of the contact angles of water on both non-metallic and metallic surfaces was reported for the low-temperature regime. In contrast, a steeper linear decline in water contact angle was demonstrated at temperatures above 100 °C. The few experimental data available on several metallic surfaces showed that the contact angle of water either again becomes nearly temperature-independent or further decreases with temperature above 210 °C. A theoretical understanding of the temperature dependence is given based on surface thermodynamic analysis, although the exact molecular mechanisms underlying these experimental observations remain unclear. Consequently, the theoretical model for predicting the variation of the contact angle of water with temperature is not well-developed. As the critical point of water (374 °C and 22.1 MPa) is approached, the surface tension, and hence the contact angle, should become vanishingly small. However, this theoretical expectation has not yet been verified due to the lack of experimental data at such high temperatures/pressures. Finally, future research directions are identified, including a systematic exploration of the contact angle at near-critical temperatures, the effects of surface oxidation, corrosion, and deposition on contact angle during operation of boilers and reactors, and the particular effect of irradiation on contact angle in nuclear reactor applications.

8.
Langmuir ; 36(32): 9586-9595, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32787132

RESUMO

It is of both practical and scientific significance to understand the temperature dependence of contact angles of water on various surfaces. However, the variation trend of water wettability on a smooth hydrophobic surface with increasing temperature remains unclear. In this work, in situ characterization of the contact angle of water on Teflon (polytetrafluoroethylene) surfaces and the interfacial tension of water over a temperature spectrum from ∼25 to 160 °C under pressurized conditions (2, 3, and 5 MPa) in a nitrogen atmosphere was conducted by employing the sessile drop and pendant drop methods, respectively. A nearly invariant trend of the contact angle was observed over the entire temperature and pressure range. As expected, however, it was shown that the water-N2 interfacial tension almost linearly declines with increasing temperature and that pressure has a negative effect on the interfacial tension. Based on the theory of surface thermodynamics, the effects of temperature on the contact angles were analyzed in combination with the gas adsorption effect. Estimations on the solid-gas interfacial tension, surface entropy, and the heat of immersion were made to gain more insights into the temperature dependence of the water contact angle on a smooth hydrophobic surface.

9.
J Colloid Interface Sci ; 561: 870-880, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771867

RESUMO

Phase change heat transfer (e.g., boiling of water) on surfaces can be enhanced by tuning the surface wettability, which is often quantified by the contact angle and is expected to be influenced by temperature and pressure. However, the temperature (and pressure) dependence of contact angles of water on metallic surfaces remain unclear. In this study, an in situ characterization of the contact angles of water on 304 stainless steel surfaces at temperatures from room temperature to 250 °C and at pressures up to 15 MPa was performed using the sessile drop method. It was shown that three distinct regimes can be identified on the contact angle-temperature curves. A slightly-decreasing trend of the contact angles with temperature was observed below 120 °C, followed by a steeper linear decrease at higher temperatures. A further rise of the decreasing rate with temperature was observed above 210 °C. In contrast to temperature, the pressure was shown to have little effects on the contact angles. Based on the theory of surface thermodynamics, the effects of temperature (and pressure) on the contact angles were analyzed in terms of the interfacial tensions. An empirical correlation was developed to predict the contact angles as a function of temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...